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Introduction

The purpose of this paper is to study the geometry of the Harris-Mumford compactifi-
cation of the Hurwitz scheme. The Hurwitz scheme parametrizes certain ramified coverings
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f : C → P1 of the projective line by smooth curves. Thus, from the very outset, one sees
that there are essentially two ways to approach the Hurwitz scheme:

(1) We start with P1 and regard the objects of interest as coverings of P1 ;

(2) We start with C and regard the objects of interest as morphisms from C to P1.

One finds that one can obtain the most information about the Hurwitz scheme and its
compactification by exploiting interchangeably these two points of view.

Our first main result is the following

Theorem: Let b,d, and g be integers such that b = 2d + 2g − 2, g ≥ 5 and d > 2g + 4.
Let H be the Hurwitz scheme over Z[ 1

b! ] parametrizing coverings of the projective line of
degree d with b points of ramification. Then Pic(H) is finite.

Remark: The number g in the statement of the Theorem is the genus of the “curve C
upstairs” of the coverings in question. Note, however, that the Hurwitz scheme H, and
hence also the genus g, are completely determined by b and d.

This Theorem is stated in §6.7, of the text. Note that although in the statement of the
Theorem here in the introduction, we spoke of “the” Hurwitz “scheme,” there are in fact
several different Hurwitz schemes used in the literature, some of which are, in fact, not
schemes, but stacks. For details about the particular type of Hurwitz scheme for which
the main theorem is proved, we refer the reader to the exact statement in §6.7, as well as
to §1 which explains the notation. Finally, we should address the issue of what happens if
d ≤ 2g + 4. Although our proof uses the somewhat leisurely lower bound of 2g + 4, it may
be possible to prove the same result for smaller d using essentially the same techniques,
but being just a bit more careful. Since at the time this paper was written, the author
was not particularly interested in this issue, he has allowed himself the luxury of taking d
to be greater than 2g + 4.

The main idea of the proof is that by combinatorially analyzing the boundary of
the compactification of the Hurwitz scheme, one realizes that there are essentially three
kinds of divisors in the boundary, which we call excess divisors (§4.7), which are “more
important” than the other divisors in the boundary in the sense that the other divisors
map to sets of codimension ≥ 2 under various natural morphisms. On the other hand, we
can also consider the moduli stack G (§6.1) of pairs consisting of a smooth curve of genus
g, together with a linear system of degree d and dimension 1. The subset of G consisting of
those pairs that arise from Hurwitz coverings is open in G, and its complement consists of
three divisors, which correspond precisely to the excess divisors. Using results of Harer on
the Picard group of Mg, we show that these three divisors on G form a basis of Pic(G)⊗ZQ,
and in fact, we even compute explicitly (§7) the matrix relating these three divisors on G
to a certain standard basis of Pic(G) ⊗Z Q. The above Theorem then follows formally.
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Crucial to our study of the Hurwitz scheme is its compactification by means of ad-
missible coverings, a notion introduced in [19]. In [19], the existence of a coarse moduli
scheme of such coverings is stated. However, we could not follow a certain key step in the
construction of this coarse moduli scheme, and so we decided that it would be best to give
a treatment of such coverings independent of [19]. In fact, we study a more general sort
of admissible covering than [19], between stable curves of arbitrary genus, and we prove a
rather general theorem (§3.22) concerning the existence of a canonical logarithmic (in the
sense of [21]) algebraic stack (A,MA) parametrizing such coverings:

Theorem: Fix nonnegative integers g, r, q, s, d such that 2g − 2 + r = d(2q − 2 + s) ≥ 1.
Let A be the stack over Z defined as follows: For a scheme S, the objects of A(S) are
admissible coverings π : C → D of degree d from a symmetrically r-pointed stable curve
(f : C → S;μf ⊆ C) of genus g to a symmetrically s-pointed stable curve (h : D → S;μh ⊆
D) of genus q; and the morphisms of A(S) are pairs of S-isomorphisms α : C → C and
β : D → D that stabilize the divisors of marked points such that π ◦α = β ◦π. Then A is a
separated algebraic stack of finite type over Z. Moreover, A is equipped with a canonical log

structure MA → OA, together with a logarithmic morphism (A,MA) → MSlog

q,s (obtained

by mapping (C;D;π) �→ D) which is log étale (always) and proper over Z[ 1
d! ].

Now we summarize what we do section by section. In §1, we define various Hurwitz
schemes as well as certain auxiliary objects to be used later. All of these objects have
both “combinatorial” (corresponding to the first point of view) and “algebro- geometric”
(corresponding to the second point of view) definitions. In §2, we use the combinatorial
point of view to prove the irreducibility of many of the objects of §1. In §3, we discuss
admissible coverings from the point of view of log schemes, and prove the Theorem just
stated above. In §4, the culmination of our exploitation of the combinatorial point of view,
we explicitly enumerate and construct the divisors at infinity of the compactification, and
begin the determination of the the divisor class group of the Hurwitz scheme.

From then on, we switch gears to the second, or more algebro-geometric, point of
view. In §5, we prepare for this by reviewing certain relevant cohomological results. In
§6, we carry out a detailed study of the “excess divisors” at infinity and thereby complete
the proof of the finiteness of the divisor class group of the Hurwitz scheme, modulo a
technical result from the next Section. Finally, in §7, to make our understanding of the
excess divisors more explicit, we carry out certain calculations relating the excess divisors
to other, better known line bundles, which also serve to complete the proof of the technical
result needed earlier.

§8 is purely conjectural and proposes possible applications of the results discussed
previously to prove arithmetic results. In particular, the explicit calculations of §7 suggest
a possible application to an effective form of the Mordell conjecture.

The reader who is interested in the circle of ideas dealt with in this paper may also
consult the related work of Arbarello, Harris, and Diaz on Severi varieties; see, for instance,
[18]. Although the results of [18] are not literally the same as ours, they are certainly
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closely philosophically related. Also, D. Edidin has been preparing a paper that gives
similar results, although at the present time, I have not yet seen this paper. Finally,
although we treat here the case when the dimension of the Hurwitz scheme is rather large,
when the dimension is very small (i.e., 1 or 2), one has the results of [6] and [7].

An earlier version of this paper was submitted as my doctoral dissertation at Princeton
University in the spring of 1992. I would like to thank my advisor, Prof. G. Faltings, both
for suggesting the topic and for his advice and support during my years as a graduate
student. Also, although none of our conversations contributed directly to the material
in this paper, my general understanding of algebraic geometry profited greatly from my
numerous conversations with Prof. N. Katz; I would, therefore, like to express here my
thanks to him, as well. Next, I would like to thank Prof. K. Kato for explaining the notion
of a log structure to me during the summer of 1991. Finally, I would like to express my
deep gratitude to Profs. K. Saito and Y. Ihara for encouraging me to publish this paper,
despite substantial opposition in certain parts of the algebraic geometry community to the
use of stacks.

§1. Different Types of Hurwitz Schemes

§1.1. The original purpose of the Hurwitz scheme is to parametrize coverings of the
projective line that have at most simple branch points. However, since there are several
different versions of the Hurwitz schemes running around in the literature, we take the
opportunity here to standardize and make explicit which version we are using at any
particular time. Also, it is necessary to construct Hurwitz-type schemes which parametrize
coverings with worse ramification than “simple branch points”. These generalized Hurwitz
schemes will aid in our elucidation of the geometry at infinity of the ordinary Hurwitz
scheme. We shall omit some details here since we are essentially reviewing well-known
material. For more details, see [13].

§1.2. Remark on characteristic p: In general, in this part of the paper, we will work
over the ring Z[ 1

N ], where N is divisible by all numbers characteristic to the problem.
Thus there will be no essential difference between what we do and what one would do if
one were to work over characteristic zero. Indeed, we shall often prove some results by
reducing to the case of characteristic zero.

Remark on Stacks: We will need to employ the notion of an “algebraic stack” (which we
will henceforth call simply a “stack” for short) in the sense of Deligne-Mumford [8]; the
reader who is not satisfied with the treatment given in [8] may also refer to Chapter 1, §4,
of [11] for basic facts about stacks. In fact, (see [11], Chapter 1, §4.10) étale locally, every
stack can be formed by taking quotients (in the sense of stacks) of schemes by finite group
actions. We explain what this means as follows: Let S be a noetherian scheme; let X be an
S-scheme of finite type; let G be a finite group acting on X by means of S-automorphisms.
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Then we shall denote by [X/G] the algebraic stack defined by “taking the quotient of X
by G in the sense of stacks.”

Concretely, relative to the “Working Definition of Algebraic Stacks” given in [11],
Chapter 1, §4.9, [X/G] is defined as follows: In the notation of loc. cit., it suffices to
specify schemes R and U , together with morphisms s, t : R → U , and μ : R ×U,t,s R → R.
For U , we take X; for R, we take G × X (i.e., a disjoint union of copies of X indexed by
the elements of G). For t : R → U , we take the morphism G × X → X that defines the
group action. For s : R → U , we take the projection G × X on the second factor. For
μ : R ×U,t,s R = (G × X) ×X (G × X) → R = G × X, we take the morphism that sends
(g1, x) × (g2, g1x) to (g2g1, x). Once checks easily that all the necessary hypotheses are
satisfied.

Now let us suppose that X = Spec(A) is affine. In [11], Theorem 4.10, a general
method is described for passing from a noetherian algebraic stack to an associated coarse
moduli space (which is general is just an algebraic space, not necessarily a scheme). If one
applies this Theorem to the algebraic stack [X/G] just constructed, one sees easily that
one obtains the scheme Y = Spec(AG) (where AG ⊆ A is the subring of functions invariant
under the action of G) as the coarse moduli space associated to [X/G].

§1.3. We start with the ordinary Hurwitz scheme. Let b,d, and g be natural numbers
subject to the relation 2(g − 1) = −2d + b, with b ≥ 4. Psychologically, g is the the
genus of the curve upstairs, b is the number of branch point of the covering, and d is the
degree of the covering. Suppose we wish to parametrize sets of b distinct points of P1.
Let R = Z[ 1

b! ]. (The reason for inverting these primes is so that all of our coverings of
degree b or d will have tame ramification, as well as Galois closures which are generically
separable.) Then there are (at least) four ways of doing this: we consider the category C
of R-schemes and the stack (in fact, a covariant functor in the first three cases) on C, that
assigns to S (an object of C) one of the four following categories (or sets in the first three
cases):

(1) “UOb” (=“unrigidified ordered”): ordered sets of sections σ1, . . . , σb :
S → S ×P1 (i.e., such that composing further with the first projection
S × P1 → S is the identity) such that the images of σi and σj do not
intersect when i 	= j;

(2) “USb” (=“unrigified symmetrized”): divisors D ⊆ S ×P1 étale over S
of degree b;

(3) “ROb” (=“rigidified ordered”): isomorphism classes of ordered sets
of sections as in (1), where by “isomorphism” we mean that we re-
gard {σ1, . . . , σb} as isomorphic to {σ′

1, . . . , σ
′
b} if there exists an S-

automorphism of S ×P1 that carries {σ1, . . . , σb} to {σ′
1, . . . , σ

′
b};

(4) “RSb” (=“rigidified symmetrized”): the stack whose objects are étale
divisors in P1-bundles (in the étale topology) over S, and whose mor-
phisms are isomorphisms of P1-bundles that preserve the designated
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divisors. Put another way, this stack is the stack obtained by taking the
quotient (in the sense of stacks) of the functor defined in (3) by the nat-
ural action of Sb (the symmetric group on b letters) given by permuting
the marked sections.

Although the use of the terminology “rigidified” here may at first appear counterintuitive
in the sense that often one adds a “rigidifying structure,” then forms the quotient by
the action of some algebraic group, here we chose to use this terminology in the sense
that “rigidification” consists in fixing the first three points at 0,1, and ∞, whereas in
the “unrigidified situation” all the points are floating around freely, hence not fixed or
rigidified.

It is elementary that each of the above four functors is representable by a smooth,
quasi-compact stack (in fact, a scheme for the first three functors) over R. Namely:

(1) UOb: Here we simply take (P1)b − {diagonals}.

(2) USb: We form the quotient by the action of Sb, the symmetric group
on b letters acting on UOb by permuting the b factors of P1, to obtain
the appropriate scheme, which may be naturally regarded as an open
subset of Pb, namely, the complement of the discriminant locus.

(3) ROb: For 1 ≤ i, j ≤ b − 3 with i 	= j, let Δij ⊆ (P1)b−3 be the (i, j)-
diagonal. Let pi : (P1)b−3 → P1 for 1 ≤ i ≤ b− 3 be the ith projection.
Then

(P1)b−3 −
{(⋃

i �=j

Δij

)
∪

(⋃
i

p−1
i ({0, 1,∞})

)}

does the job.

(4) RSb: Clearly Sb acts on ROb in such a way that the action is generi-
cally free. If we form the quotient by this action in the sense of stacks
(as reviewed in §1.2), we obtain the desired algebraic stack, which is
generically a scheme.

We will refer to any one of these four schemes (resp. functors, stacks as “b-point schemes
(resp. functors, stacks)”, prefixing this term with the appropriate descriptives “rigidified”,
“ordered”, etc. when necessary, and omitting the “b” when speaking generally. These four
b-point stacks fit into the following commutative diagram:

UOb −→ USb⏐⏐� ⏐⏐�
ROb −→ RSb

(Diagram 1.1A)
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Note that the vertical arrows are PGL(2)-torsors, while the horizontal arrows are Sb-
torsors. Thus, when we tensor with C and take the topological fundamental group, we
get:

πtop
1 (UOb,C) −→ πtop

1 (USb,C)⏐⏐� ⏐⏐�
πtop

1 (ROb,C) −→ πtop
1 (RSb,C)

(Diagram 1.1B)

Here the horizontal arrows are injections and the vertical arrows are surjections; also, by
“topological fundamental group,” we mean in the sense of stacks, i.e., the fundamental
group formed by considering étale coverings of the stack in question by analytic stacks.
Finally, let us note that USb is used in [13], while ROb is used in [19].

Let T be any one of the four b-point stacks (resp. schemes). Then to T, we may
associate a Hurwitz stack H in such a way that H is étale over T, hence representable by
an algebraic stack. Indeed, consider the following stacks (which are schemes in the first
three cases, so long as d ≥ 2) over C:

(1) HUOb,d: data of the following form: an arrow α : C → P1 in the
category of S-schemes such that the induced arrow C → S is a smooth,
geometrically connected, proper curve of genus g, and where α is flat of
degree d with simple ramification (i.e., the discriminant divisor is étale
over the base – see [13], §5) exactly at given sections σ1, . . . , σb : S → P1,
where the σi’s are mutually disjoint S-sections;

(2) HUSb,d: same sort of data as above except that instead of the σi’s, we
are given a divisor D ⊆ S ×P1 which is finite étale over S of degree d,
at which the simple ramification is to take place;

(3) HROb,d: isomorphism classes of the data in (1), where isomorphisms
involve automorphisms over S of P1 that carry one set of sections to the
other, and over which there is an isomorphism of the respective curves
C;

(4) HRSb,d: stack whose objects are collections of data as in (2), except
that we replace S×P1 by an arbitrary P1-bundle in the étale topology,
and whose morphisms are isomorphisms of P1-bundles that preserve the
designated divisors and over which lies an isomorphism of the respective
curves C.

We see easily by Grothendieck’s representability theorem (as applied in [13], §6) that all
four of these Hurwitz stacks are relatively representable by étale morphisms over their
respective b-point schemes. The key fact in the proof of loc. cit. (and proven there on p.
566) is the following result, whose proof we repeat here for the convenience of the reader
(in a slightly more general form):
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Lemma : Let k be an algebraically closed field, f : C → P1
k a covering of degree d ≥ 3,

where C is a smooth, connected, proper curve of genus ≥ 2 over k. We assume that C is
simply ramified over P1

k, except possibly at one point p ∈ P1
k, where we allow arbitrary

ramification. If ϕ : C → C is an automorphism such that f ◦ ϕ = f , then ϕ = id.

Proof: (cf. [13], p. 548 — the problem with Fulton’s proof is that it apparently makes
use of the characteristic zero assumption, so we trivially generalize his proof here for the
sake of completeness). Let μ = H1

ét(ϕ) denote the induced map on l-adic cohomology,
where l is different from the characteristic of k. Since, as in well-known the automorphism
group of C is finite, we see that μ must have eigenvalues that are roots of unity; hence
|Tr(μ)| ≤ 2g (under any embedding of an algebraic closure of Q� into C). Thus, by the
Lefshetz fixed point theorem, the number of fixed points of ϕ is ≤ 2g + 2. But since ϕ
must fix the ≥ (2g − 2) + 2d + 1 − (d − 1) = 2g + d ≥ 2g + 3 branch points, we have a
contradiction unless ϕ = id. ©

Let us note that if T ′ is another b-point stack with corresponding Hurwitz stack H ′, and
if T ′ → T is one of the arrows in Diagram 1.1A, then we have H ′ = H ×T T ′.

§1.4. We are now going to define generalizations of the Hurwitz stacks, namely, “de-
generate Hurwitz stacks”, which we shall use to make explicit the compactification of the
original Hurwitz stacks. We start by defining “degenerate b-point stacks”. The reason for
the use of the descriptor “degenerate” will become clear once these Hurwitz-type stacks
are defined. As usual, we have four types, of which the first three are schemes:

(1) DUOb: We take UOb.

(2) DUSb: Let Sb−1 act on the first b − 1 sections of UOb. Then take the
quotient of UOb by this action. Note that (1) and (2) can be defined
also for b = 3.

(3) DROb: We take ROb, when b ≥ 4. When b = 3, we take RO3 =
Spec R.

(4) DRSb: As before Sb−1 acts on ROb. Take the quotient by this action
in the sense of stacks if b ≥ 4. When b = 3, take RS3 = Spec R.

As before, there is a functorial interpretation of these degenerate b-point stacks. We leave
it to the reader to work out this interpretation in terms of various sorts of collections of
sections of divisors in P1. In this interpretation, we shall call the first b− 1 sections (resp.
the étale divisor induced by the first b − 1 sections) the marking sections (resp. marking
divisor) and the last (i.e., bth) section the clutching section.

Now fix σ ∈ Sd. Let T = one of the degenerate b-point stacks. Then we denote by
M ⊆ P1 × T (resp. C ⊆ P1 × T ) the marking (resp. clutching) divisor. Let D = M ∪ C.
Then M , C, and D are relative T -divisors with normal crossings. Moreover, T is smooth
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over our original ring R. Now by [29], Exposé XIII, Appendice I, we can form F = R1
étf∗Sd,

where U = (P1 × T ) − D, f : U → T is the restriction of the projection to the second
factor π2 : P1 × T → T , and (by abuse of notation) Sd is the constant étale sheaf in
noncommutative groups on U with fibre Sd:

U ⊆ P1 × T ⊇ D ⊇ M,C

f ↘
⏐⏐�π2

T

Thus F is a finite étale covering of T. Write g : F → T . For each geometric point t of
T , g−1(t) can be identified with Hom′(πalg

1 (P1
t − Dt), Sd), where the “prime” after the

Hom means “up to inner automorphism” (thus exempting us from the need to choose a
base point for our π1). Let us consider the closed and open substack K ⊆ F , which is also
finite étale over T and which is such that if k = g|K, then k−1(t) can be identified with
those homomorphisms ϕ : πalg

1 (P1
t − Dt) → Sd such that:

(1) ϕ is surjective.

(2) ϕ takes the generators of the monodromy groups around the marked
points to transpositions.

(3) ϕ takes the generator of the monodromy group around the clutching
point to a conjugate of σ.

Then K will be our degenerate Hurwitz stack, which we shall denote, depending on the
situation by DHUOσ

b,d; DHUSσ
b,d; DHROσ

b,d; or DHRSσ
b,d (of which all but the last are

schemes). Note that the degenerate Hurwitz stacks corresponding to conjugate σ may be
naturally identified.

§1.5. Remark: Unlike the original Hurwitz stacks, it is not clear (at least to the
author) that these degenerate Hurwitz stacks should have any modular interpretation at
all. Indeed, the logic of [13], §1.4, 1.5, does not follow through here because of the more
complicated nature of the ramification involved. The problem is that if we denote by
F what one might think is the appropriate modular stack (in terms of coverings of the
projective line), and by DH one of the degenerate Hurwitz stacks, we get morphisms α :
F → DH (clear) and β : DH → F (by the “pseudo-universal” covering to be constructed
in the following paragraph) and one can show that α ◦ β = 1DH, hence that α is smooth.
But in order to show that it is étale, one needs, in the case of simple coverings, the fact
that the discriminant divisor is étale; since one does not have this fact here, one cannot
follow through as before.

However, if DH is one of the degenerate Hurwitz stacks, we can construct what one
might call a “pseudo-universal” covering as follows. (Here we use the term “pseudo-
universal” loosely in the sense that although DH does not actually represent the moduli
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stack F of coverings of a certain type (in which case the tautological covering over DH
would be called simply “universal”), at least over each closed point of DH the “pseudo-
universal” covering “is” the covering corresponding to that closed point). Indeed, it is
tautological that there exists an étale covering ψ : V → (P1 ×DH) − DDH such that the
normalization V → P1 × DH of P1 × DH in V is what we want. The only thing that is
nonobvious is that V is a smooth, proper curve over DH. But smoothness follows from
the fact that DH is regular (since T is) and by applying Abhyankar’s lemma. Thus, to
summarize we have the following diagram:

C η−→ DH× P1 ⊇ DDH ⊇ MDH, CDH

ζ ↘
⏐⏐�
DH

where C = V , ζ is smooth, proper, with geometrically connected fibres, η is flat, étale
outside of DDH, has simple ramification outside of CDH, and has ramification of the type
prescribed by σ over CDH. In particular, by the Lemma of §1.3, it follows that if d ≥ 3,
then C has no automorphisms that fix η.

§1.6. Finally, let us note as before that we have diagrams:

DUOb −→ DUSb⏐⏐� ⏐⏐�
DROb −→ DRSb

(Diagram 1.2A)

where the vertical arrows are PGL(2)-torsors, and the horizontal arrows are Sb−1-torsors,
and

πtop
1 (DUOb,C) −→ πtop

1 (DUSb,C)⏐⏐� ⏐⏐�
πtop

1 (DROb,C) −→ πtop
1 (DRSb,C)

(Diagram 1.2B)

where the vertical arrows are surjections, and the horizontal arrows are injections. Note
that if D′ → D is an arrow in the first diagram, then with respect to degenerate Hurwitz
stacks and “pseudo-universal” curves, we have DH′ = DH×D D′ and C′ = C ×DH DH′.

Before continuing, we remark that although it is not absolutely necessary for what
follows to use all four versions of the Hurwitz scheme, we presented them here in this
introductory section in some detail so as to clarify which was which, since to the author’s
knowledge, there does not yet seem to exist either standard notation or standard termi-
nology in the literature that allows one to specify precisely which Hurwitz scheme one is
dealing with at any particular time.
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§2. Irreducibility

§2.1. The first topological invariant that one wishes to compute about a newly con-
structed object is its connectedness, or irreducibility. Here we show that HUSb,d and
DHUSσ

b,d – which are schemes, so long as d ≥ 3 – are geometrically irreducible over R.
It then follows from Diagrams 1.1A and 1.2A that the stacks HRSb,d and DHRSσ

b,d are
also geometrically irreducible over R. To prove irreducibility, we note that as in [13], pp.
546–7, we must show that the fundamental group of the appropriate b-point stack acts
transitively on the set corresponding to the étale covering which is the Hurwitz scheme; as
in loc. cit., we see that the fundamental group of the b-point stack has certain canonical
elements that correspond to “braiding” various pairs of points; hence we are reduced to
the following combinatorial Proposition.

§2.2. Proposition : Fix b, d ∈ N, σ ∈ Sd. Let Aσ
b,d be the set of ordered b-tuples of

transpositions {t1, . . . , tb} of Sd such that t1t2 . . . tb = σ and such that the group generated
by the ti’s acts transitively on {1, . . . , d}. Define an “elementary move” on Aσ

b,d as an
automorphism of Aσ

b,d that takes {t1, . . . , ti, ti+1, . . . , tb} to {t1, . . . , ti+1, ti+1titi+1, . . . , tb}
for some i. Then the free group F generated by the elementary moves acts transitively on
Aσ

b,d.

(Psychological Remark: In the case of degenerate Hurwitz stacks, i.e. σ 	= id, what we
have called b here really corresponds to b − 1 in the previous section.)

Notational Remark: We shall denote chains of transpositions by <?, ?, . . . , ? >, where each
of the question marks is a transposition, and we shall make elementary moves on such
chains, where we regard these chains as subchains of the original b-tuple of transpositions.
It is clear that an elementary move on such a subchain corresponds to an elementary move
on the original b-tuple. We call two elements t, t′ of Aσ

b,d equivalent if they lie in the same
domain of transitivity of F. We write t ∼ t′.

Bibliographical Remark: It has been brought to the author’s attention that similar results
were obtained using similar techniques in the classical papers of [4], [20], and [25], as well
as the more recent paper of [2].

§2.3. Lemma : We have the following relations:

(1) < (12), (23) > ∼ < (13), (12) >

(2) < (12), (23), (23) > ∼ < (12), (13), (13) >

(3) < (12), (13), (13) > ∼ < (13), (13), (12) >

(4) And lastly:

< (12), (12), (23), (23),(23), (23) >

∼ < (12), (12), (12), (12), (23), (23) >
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Proof: For (1) to (3), we have < (12), (23) > ∼ < (23), (13) > ∼ < (13), (12) >.
Applying this twice, we get

< (12), (23), (23) > ∼ < (13), (13), (12) >

On the other hand,

< (12), (13), (13) > ∼ < (13), (23), (13) > ∼ < (13), (13), (12) >

Putting this together, we obtain (1) through (3). As for (4), one sees by (3) that, up to
equivalence, both sides of (4) are of the same form in the sense that they differ only in
that the digits 1 and 3 have opposite roles on the two sides; moreover, a chain of this form
may be uniquely specified by stating which digit (i.e., of 1, 2, or 3) appears twice, which
four times, and which six times. For the left hand side, these are, respectively, (1, 3, 2); for
the right hand side, they are (3, 1, 2). Thus, if we think of the symmetric group on three
letters acting on chains of this form by permuting the digits 1, 2, and 3, we see that it
suffices to show that the left hand side is equivalent both to “(2, 3, 1)” and to “(1, 2, 3)”.
By the part of the lemma already proven, we have that the left hand side

< (12), (12), (23), (23), (23), (23) > ∼ < (12), (13), (13), (13), (13), (12) > =

what we have referred to as “(2, 3, 1)”. Since < (12), (23) > ∼ < (23), (13) >, we have
that the left hand side

< (12), (12), (23), (23),(23), (23) >

∼ < (23), (13), (13), (23), (23), (23) >

∼ < (13), (13), (23), (23), (23), (23) >

by (3). But this last chain is just “(1, 2, 3)”. ©

§2.4. Lemma : Let α, β ∈ {1, . . . , d} with α 	= β. Let t ∈ Aσ
b,d. Then t ∼ t′ such

that t′1 = (α β).

Proof: Let us note first that by the transitivity assumption on elements of Aσ
b,d, we know

that α and β must appear somewhere as digits in the transpositions of t. By elementary
moves, we can assume that t1 contains α; by subsequent elementary moves toward the
front, and the transitivity assumption on elements of Aσ

b,d, we may assume that t is of the
following form:

t1 = (α x2), t2 = (x2x3), t3 = (x3, x4), . . . , ti = (xixi+1), . . . , tr = (xr β), with r ≤ b

Here the xi’s are distinct from each other and from α and β. Now we have

< (α x3), (α x2) > ∼ < (α x2), (x2x3) > = < t1, t2 >
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so by substituting < (α x3), (α x2) > for < t1, t2 >, moving the ti’s for 3 ≤ i ≤ r down one
position to the left, and sending (what would originally have been) (α x2) out to the right
beyond what was tr, we see that we obtain the same situation as what we started with,
except that r is one less than it was before. Now apply induction. ©

§2.5. Let us prove the Proposition first in the case of the nondegenerate Hurwitz stack,
i.e., when σ = id. Let t ∈ A

(id)
b,d . We shall show that t ∼ a chain which consists of a nonzero,

even number of (12)’s, followed by a nonzero, even number of (23)’s, and so on through
(d − 1, d). By Lemma 3, (4), all such chains are equivalent, so we are done.

By transitivity, Lemma 4 allows us to assume that t1 = (12), t2 = (12) on account of
the fact that σ = id. By using inverse elementary moves to bring things to the front, we
may assume that t3, . . . , tr contain a “1”, but that ti (∀i > r) do not. We claim that we
may move to a situation where (with possibly a new r) t3, . . . , tr are all equal to (12). For,
if there is an i such that 3 ≤ i ≤ r − 1 and ti = (1a), ti+1 = (1b) with 1 	= a 	= b, then
< (1a), (1b) > ∼ < (1b), (ab) >, so we can reduce to the same situation with lower r.
Thus we may assume that t3 = t4 = . . . = tr. If t3 = (12), then we have proven the claim.
If t3 = (1a) with a 	= 2, then it is easy to see that r must be even (since ti (∀i > r)
doesn’t contain a “1”); hence, applying Lemma 3, (2), proves the claim. Now repeating
the above procedure finishes the proof for σ = id.

§2.6. Proof of Proposition 2:

Step A: First we introduce some notation. Write σ = γ1 . . . γr where each

γi = (a(i)
1 , a

(i)
2 , . . . , a(i)

ei
)

is a nontrivial cycle with domain of transitivity Δi such that Δi

⋂
Δj = ∅ for i 	= j. Let

q = r + d − (
∑r

i=1 ei), N = (
∑r

i=1 ei) − r. Then let the Δi for r + 1 ≤ i ≤ q be the
remaining trivial domains of transitivity of σ. For simplicity, let’s write 1i, 2i, etc. for
a
(i)
1 , a

(i)
2 , . . .. Now define

Zi =< (1i2i), (1i3i), (1i4i), . . . , (1i(ei)i) >∈ Aγi

(ei−1),ei

Let N denote the concatenation of chains Z1,Z2, . . . ,Zr.

Now let t ∈ Aσ
b,d. By Lemma 4, we see that we may assume that t begins with N .

(Note that this same logic already proves the Proposition for Aγi

(ei−1),ei
.) Thus we have

normalized t1, . . . , tN . It remains to deal with ti for i > N .

Step B: Let D1, . . . ,Ds (⊆ {1, . . . , d}) be the domains of transitivity of the group gen-
erated by the ti, for i > N , (so

⋃s
i=1 Di = {1, . . . , d} and Di

⋂Dj = ∅ ∀i 	= j). For
1 ≤ j ≤ s, let

Pj =
{

i ∈ {1, . . . , b}| i > N and ti acts nontrivially on Dj

}

13



Note that if we take the subchain τ j of transpositions of t indexed by Pj , then τ j ∈
A

(id)
|Pj |,|Dj |. By §2.5, we may assume that τ j consists of a sequence of pairs of identical

transpositions. Now we claim:

Claim : If q 	= 1, then we may assume that every ti (∀i > N) is of the form (xy) with
x ∈ Δk, y ∈ Δl, k 	= l.

Proof of Claim : Suppose we have a pair ti = ti+1 = (ab), where i ≡ N +1 (mod 2)
and a, b ∈ Δk with a 	= b. Since all the ti’s together generate a group transitive on
{1, . . . , d}, there exists a j > N with j ≡ N + 1 (mod 2) such that tj = tj+1 = (cd)
with c ∈ Δk and d ∈ Δl where l 	= k. We may move ti, ti+1 so that they are adjacent to
tj , tj+1 (by Lemma 3, (3)), so we obtain:

< (cd), (cd), (ab), (ab) >

By Lemma 7A below, we may assume that b = c. Then applying Lemma 3, (2), with 1, 2, 3
replaced by d, c, a, respectively, we have

< (cd), (cd), (ac), (ac) > ∼ < (cd), (cd), (ad), (ad) >

Repeating this procedure proves the claim. ©

§2.7. Lemma A : Suppose in the above situation (except that q might be one) that
we have a pair ti = ti+1 = (ab) with i ≡ N + 1 (mod 2), and a, b ∈ Δk, a 	= b. Then we
may move to the same situation, except with a = 1k, b = 2k.

Proof: We may assume that with respect to the ordering 1k < 2k < 3k < . . ., we have
a < b. By moving around chunks of t that commute with each other, we may assume that
i = N + 1 and we may move Zk right up to the left of tN+1:

t = Z1Z2 . . .Zk . . .ZrtN+1tN+2 . . . tb⏐⏐�goes to

t = Z1Z2 . . .Zk−1Zk+1 . . .ZrZktN+1tN+2 . . . tb

Suppose a 	= 1k. Since we have shown the Proposition for Aγk

(ek−1),ek
, we may assume that

Zk ends with the transposition
(

(a − 1), a
)

. By Lemma 3, (2),

<

(
(a − 1), a

)
, (ab), (ab) > ∼ <

(
(a − 1), a

)
,

(
(a − 1), b

)
,

(
(a − 1), b

)
>

By repeating this procedure many times, we can assume that a = 1k. Applying the same
process to b proves the Lemma. ©
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Lemma B : In the above situation, suppose that we have a pair ti = ti+1 = (ab) (where
i ≡ N + 1 (mod 2)) with a ∈ Δk and b ∈ Δl, where k 	= l. Then we may assume that
a = 1k, b = 1l.

Proof: Same as for Lemma A. ©

§2.8. By Lemma 7B and the claim at the end of §2.6, if q 	= 1, then we may assume
that every ti (for i > N) is of the form (1k1l) for k 	= l. If q = 1, then Δ1 = {1, . . . , d}
and we may assume that every ti (for i > N) is of the form (1121). Thus if q = 1, we have
found a standard normalizing form for t, so the Proposition has been proved.

If q 	= 1, then we note that if we regard (1k1l) as an element of the permutation group
of the symbols Δ1, . . . ,Δq, then the ti’s (for i > N) act transitively on the Δj ’s (since all
the ti’s together act transitively on {1, . . . , d}); on the other hand, tN+1tN+2 . . . tb = (id).
Thus we are in the situation of dealing with an element of A

(id)
(b−N),q. But the Proposition

has already been proven in this case. Thus we are done. ©

§2.9. For ease of reference, we restate the main result of this section as a Theorem:

Theorem : For all b, d ∈ N such that b ≥ 3, and all σ ∈ Sd, we have that HUSb,d;
DHUSσ

b,d; HRSb,d; and DHRSσ
b,d are all geometrically irreducible over R.

§2.10. We now turn to the proof of another similar irreducibility result which will be
useful later. Let us recall the situation of of §1.5:

C β−→ D × P1 ⊇ CD

α ↘
⏐⏐�γ

D⏐⏐�
T

(Here T is the relevant degenerate b-pointed stack.) By §4.3, we see that the reduced
inverse image E of CD via β is étale over CD ∼= D. (We placed this Lemma in §4 in which
it is more in context, since this Section is concerned primarily with combinatorics.) Thus
E → T is an étale covering. It is clear that the portions of E that correspond to different
ramification indices form different connected components, even over R. In fact, we have
the following result:

Proposition : The geometric (i.e., after tensoring from R up to C) connected com-
ponents of E are in one-to-one correspondence with the set of ramification indices over
CD, which is the same as the set of cardinalities of domains of transitivity of σ, where
D = DHUSσ

b,d or DHRSσ
b,d.
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Proof: As before, we consider the action of braiding elements of the fundamental group of
T on the set B corresponding to the étale covering E → T . Simple reflection reveals that
B may be given the following description: B consists of the set of pairs {(t1, . . . , tb−1),Δ}
where (t1, . . . , tb−1) ∈ Aτ

b−1,d, with τ conjugate to σ and Δ a domain of transitivity of τ .

The action of braiding on the first b−1 factors clearly doesn’t affect τ , and acts via an
“elementary move” on the Aτ

b−1,d part and trivially on Δ. The action of double braiding
between the last two factors clearly takes the domain of transitivity Δ of τ to the domain
of transitivity tb−1(Δ) of tb−1τtb−1. By Proposition 2, we can take any given element of B
to an element with tb−1 arbitrary via braiding in the first b− 1 factors. By doing this and
then double braiding in the last two factors, it is thus clear that we can take any domain
of transitivity Δ of τ to any other domain of transitivity of τ with the same cardinality.
This completes the proof.©

§3. Log Admissible Coverings

§3.1. In this paper, we will be interested in studying not only the various Hurwitz
stacks introduced in §1, but also their compactifications. In [19], a definition of an “ad-
missible covering” is proposed as a means of compactifying the Hurwitz scheme HROb,d.
Unfortunately, since Harris-Mumford are interested only in the coarse moduli scheme of
such admissible coverings, their definition of an admissible covering is not well suited to
the study of families and the construction of an algebraic stack of admissible coverings.
The main reason for this is that the natural context in which to study such admissible
coverings is not the category of schemes, but rather that of log schemes, as defined by
Kato in [21]. Thus, in this Section, we propose to give a foundational treatment of log
admissible coverings. In particular, we prove a rather general existence theorem for a log
algebraic stack of such coverings. If we forget the log structure of this log algebraic stack,
and consider the associated coarse moduli space (as in [11], Theorem 4.10), we recover the
coarse moduli scheme of Harris-Mumford.

Remark: In an earlier version of this paper, we referred to the proof of [19] in our construc-
tion of a moduli stack of admissible coverings. Indeed, the existence of such an algebraic
moduli stack is essentially a formal consequence of what [19] claim to have proven. How-
ever, various people who read that earlier version complained bitterly that they could not
follow the proof in [19]. Upon closer inspection, the author discovered a counterexample
to one of the key claims in the proof of the existence of a coarse moduli scheme in [19]
(see §3D below for more details). Thus, it seems that at this point, one must consider the
proof of this result in [19] to be incomplete. In light of this situation, the author decided
that it would be best to give a detailed treatment of the existence of an algebraic moduli
stack of admissible coverings that is independent of what is done in [19].
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§3A. Basic Definitions

§3.2. We start by reviewing Knudsen’s notion of an r-pointed stable curve. Let S be
a scheme.

Definition: A flat, proper morphism f : C → S of schemes together with r sections
σ1, . . . , σr : S → C is called an r-pointed stable curve of genus g if

(1) the geometric fibres Cs of f are connected, reduced, of dimension 1, have
dimk(s) H1(Cs,OCs

) = g, and have at most ordinary double points as
singularities;

(2) the images of the sections σ1, . . . , σr are disjoint and land in the smooth
locus of f ;

(3) the relative dualizing sheaf ωC/S is relatively ample with respect to f .

We shall refer to the sections σ1, . . . , σr as the marked points of f : C → S, and to the
divisor in C defined by the union of the σi as the divisor of marked points.

Note that the ampleness condition (3) implies that 2g − 2 + r ≥ 1. [22] shows that there
exists a smooth, proper (over Z) moduli stack for such data, which we shall denote by
Mg,r. Those r-pointed stable curves for which C → S is smooth define an open substack
Mg,r ⊆ Mg,r. The complement of Mg,r in Mg,r is a divisor with normal crossings. We
shall call this divisor the divisor at infinity of Mg,r.

We shall often find it convenient to use the language of log structures and log schemes
of [21]. A log structure on S consists of an étale monoid M on S, together with a morphism
M → OS of monoids that satisfies certain properties. See [21] for more details. We shall
write the monoid operation on sections of M additively, and refer to the given morphism
M → OS as the exponential map of the log structure.

The divisor at infinity of Mg,r thus defines (as in [21], §1.5, (1)) a log structure on
Mg,r which we shall call the canonical log structure on Mg,r. We shall denote the resulting
log stack by Mlog

g,r .

Let MMg,r
denote the étale monoid that defines the canonical log structure on Mg,r.

Thus MMg,r
is precisely the subsheaf of OMg,r

consisting of functions invertible on Mg,r.
Let

GMg,r
⊆ MMg,r

be the subsheaf of functions whose zero locus is smooth (over Z). Thus, O×
Mg,r

⊆ GMg,r
,

and O×
Mg,r

acts freely on GMg,r
. Let NMg,r

be the quotient MMg,r
/O×

Mg,r
. Then
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ΓMg,r

def= GMg,r
/O×

Mg,r
⊆ NMg,r

is a constructible sheaf of sets (in the étale topology). Finally, note that GMg,r
generates

the sheaf of monoids MMg,r
.

Let (C → Mg,r;σ1, . . . , σr : Mg,r → C) denote the universal r-pointed stable curve
of genus g. It is shown in [22] that C may be naturally identified with Mg,r+1. Let
us denote by Clog the log stack obtained by pulling back the canonical log structure on
Mg,r+1 relative to this identification. We shall call this log structure on C the canonical
log structure on C. Note that the canonical log structure on C can also be obtained as
the log structure associated to the divisor with normal crossings which is the union of the
images of the σi, together with the pull-back via C → Mg,r of the divisor at infinity of

Mg,r. Thus, just as for Mg,r, we can define GC ⊆ MC and ΓC
def= GC/O×

C ⊆ NC .

§3.3. When working in the logarithmic category, the following notion is more conve-
nient than the classical notion of Knudsen reviewed above. Let Slog be a fine log scheme
(in the sense of [21], §2.3).

Definition: A morphism of log stacks κlog : Slog → Mlog

g,r will be referred to as the
data for an r-pointed stable log-curve of genus g. For such a κlog, let Clog → Slog be the

pull-back (in the logarithmic category) of the universal object Clog → Mlog

g,r by means of

κlog. Such a Clog → Slog will be referred to as an r-pointed stable log-curve of genus g.

Note that for smooth curves, once one is given a classifying morphism κ : S → Mg,r,
the resulting log morphism κlog : Slog → Mlog

g,r is uniquely defined, so smooth curves and
smooth log-curves are equivalent notions. However, if κ : S → Mg,r does not map into
Mg,r, then it is easy to construct examples of distinct log morphisms Slog → Mlog

g,r with
the same underlying stack morphism κ : S → Mg,r. Nonetheless, given a morphism
κ : S → Mg,r, there always exists a natural choice of log structure on S for which κ

extends to a logarithmic morphism: namely, the pull-back of the log structure on Mlog

g,r .

Now let Clog → Slog be an r-pointed stable log-curve of genus g. Let MC (respectively,
MS) denote the étale monoid defining the log structure of Clog (respectively, Slog). Let
NC (respectively, NS) be the quotient MC/O×

C (respectively, MS/O×
S ). Then we obtain a

natural morphism from ΓC|C (respectively, ΓMg,r
|S), to NC (respectively, NS). We denote

the image of this morphism by ΓC (respectively, ΓS). Thus, ΓC (respectively, ΓS) forms
a subsheaf (of sets) of NC (respectively, NS). Let GC (respectively, GS) be the inverse
image of ΓC (respectively, ΓS) in MC (respectively, MS) via the projection MC → NC

(respectively, MS → NS). We shall call ΓC (respectively, ΓS ; GC ; GS) the sheaf of
generators of NC (respectively, NS; MC ; MS). Since ΓC is a constructible sheaf of sets on
C, one can regard (see [28], p. 160) ΓC as a quasi-finite algebraic space over S. Then GC

defines an O×
ΓC

-torsor, hence a line bundle LC on this algebraic space ΓC .
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Finally, by forgetting log structures, we obtain an underlying r-pointed stable curve of
genus g: (f : C → S;σ1, . . . , σr : S → C).

§3.4. Sometimes it is convenient to forget the ordering on the marked points of a
pointed stable curve. That is to say, we have a natural action of Sr (the symmetric group
on r letters) on Mlog

g,r given by permuting the marked points. If we form the quotient of

Mlog

g,r by Sr (in the sense of stacks), we thus obtain a log stack MSlog

g,r . Note that the

universal log-curve Clog → Mlog

g,r descends to a log-curve CSlog → MSlog

g,r . Let Slog be a
fine log scheme.

Definition: A morphism of log stacks κlog : Slog → MSlog

g,r will be referred to as the data
for a symmetrically r-pointed stable log-curve of genus g. For such a κlog, let Clog → Slog

be the pull-back (in the logarithmic category) of the universal object CSlog → MSlog

g,r by

means of κlog. Such a Clog → Slog will be referred to as a symmetrically r-pointed stable
log-curve of genus g. If we forget the log structures of such a log-curve, the resulting
(f : C → S;μf ⊆ C) (where μf ⊆ C is the divisor of marked points) will be referred to as
a symmetrically r-pointed stable curve of genus g.

For instance, when g = 0, the open substack MSg,r ⊆ MSg,r of smooth curves may be
identified with the stack RSb of §1.3.

§3.5. We are now ready to state the main definition of this Section. Let f log : Clog →
Slog (respectively, hlog : Dlog → Slog) be a symmetrized r- (respectively, s-) pointed stable
log-curve of genus g (respectively, q). Let μf ⊆ C (respectively, μh ⊆ D) be the divisor of
marked points. Let πlog : Clog → Dlog be a morphism of log schemes.

Definition: We shall say that πlog : Clog → Dlog is a log admissible covering of degree
d if the following conditions are satisfied:

(1) πlog is log étale (in the sense of [21], §3.3); moreover, the morphism
π−1ND → NC induced by the morphism of log structures maps ΓD into

Γd
C

def=
d⋃

i=1

i · ΓC

(2) π is finite;

(3) π is of degree d on a dense open set of every fiber of h : D → S;

(4) μf ⊆ π−1(μh); π−1(μh) ⊆ d · μf ;

(5) f is smooth at c ∈ C if and only if h is smooth at π(c).
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We now make some trivial observations concerning log admissible coverings:

(1) Of the above conditions, only the first depends on the log structures;
the rest depend only on the morphism of schemes π.

(2) Note that the second inclusion in condition (4) actually follows from
conditions (1) and (5).

(3) Let x ∈ C − μf be a point at which f is smooth. Let y = π(x). Then
the log structure on Clog (respectively, Dlog) at x (respectively, y) is
just the pull-back to C (respectively, D) of the log structure on Slog. It
thus follows that π is étale at x.

(4) If hlog has the property that every irreducible component of every ge-
ometric fiber Ds of h is smooth, then f log also has this property.

§3.6. Suppose that now that (f : C → S, μf ⊆ C) and (h : D → S, μh ⊆ D) are
symmetrically pointed stable curves. Then we make the following definition

Definition: A morphism π : C → D will be called an admissible covering if there exist,
étale locally on S:

(1) a fine log scheme Slog with underlying scheme S;

(2) symmetrically pointed stable log-curves Clog → Slog and Dlog → Slog

whose underlying symmetrically pointed stable curves are (f : C →
S, μf ⊆ C) and (h : D → S, μh ⊆ D);

(3) a log admissible covering πlog : Clog → Dlog whose underlying scheme
morphism is π

Remark: We shall see below that when D → S is of genus zero, the definition agrees with
that of [19], p. 57. The reason that we prefer this definition is that when considering
moduli of morphisms of curves, it is very difficult to incorporate conditions that involve
the existence of certain local functions on the curves (as do the conditions given in [19],
p. 57). Since a log structure essentially involves some sort of complicated monoid-worth
of global (on the curve) line bundles, a morphism of log structures amounts to some sort
of morphism of line bundles, hence (as we shall see below) is relatively easy to consider
the moduli of. On the other hand, one draw-back of the above definition of an admissible
covering is that the log structure on S is not uniquely or canonically defined. Nonetheless,
we shall see below a posteriori that, in fact, there does always exist a canonical log structure
on S with respect to which an admissible covering π extends to a log admissible covering.

20



§3B. First Properties

§3.7. Let A be a local noetherian henselian ring. Let s ∈ mA (the maximal ideal of
A). Let R be the henselization of A[X,Y ]/(XY − s) (where X and Y are indeterminates)
at the ideal generated by mA, X, and Y . Thus, R is a local noetherian henselian ring,
with maximal ideal mR. Let x, y ∈ R be the images of X and Y , respectively. Then we
have the following

Lemma: Suppose that we are given x′, y′ ∈ R; s′ ∈ A such that x′y′ = s′, and
(x, y,mA) = (x′, y′,mA) (equality of ideals in R). Then there exist units ux, uy ∈ R×

with uxuy ∈ A× such that either uxx = x′ and uyy = y′, or uxx = y′ and uyy = x′.

Proof: Let us first consider the case when s = 0. Then the Lemma follows immediately
from the simple structure of the ring A[[X,Y ]]/(XY ), and faithfully flat descent from
A[[X,Y ]]/(XY ) down to R. Now let us return to the case of arbitrary s. By considering
the ring R/sR = A/sA[[X,Y ]]/(XY ) (and applying the Lemma to this ring), it thus follows
that s′ ∈ (s). Moreover, without loss of generality, we may assume that x′ = x + s · φ and
y′ = y + s ·ψ, for some φ, ψ ∈ R. By multiplying x′ and y′, we thus obtain that s′ is equal
to s times a unit in R. Since R is faithfully flat over A, it follows that s′ is equal to s
times a unit in A. Thus, without loss of generality, we may assume that s′ = s. Let R′

(respectively, A′) be the completion of R of (respectively, A). If we restrict ourselves to
finding ux and uy such that uxuy = 1, then it follows from the definition of “henselization,”
that it suffices to prove the Lemma with R and A replaced by R′ and A′, respectively.

Let us review our situation: We have x′, y′ ∈ R′ such that x′y′ = s and (x′, y′,mA′) =
(x, y,mA′). Suppose we know that x′ = x + sif ; y′ = y + sig, for some f, g ∈ R′, and
some positive integer i. By multiplying x′ and y′, we obtain that x(sig)+y(sif) ∈ si+1R′.
Thus, x + y annihilates the image of x(sig) ≡ −y(sif) in siR′/si+1R′. Since x + y is a
regular element of R′, we thus obtain that xsig ≡ ysif ≡ 0. On the other hand, from
the structure of the module siR′/si+1R′ = siA′/si+1A′[[X,Y ]]/(XY ), one then obtains
that sif − sixα, sig − siyβ ∈ (si+1), for some α, β ∈ R′ such that α (respectively, β) is a
power series in x (respectively, y). Now let us note that we can always make substitutions
of the following sort: replace x′ by x′ · u−1, and y′ by y′ · u (for some unit u ∈ (R′)×),
without affecting the validity of the Lemma. Moreover, if we make such a substitution,
with u = 1+ siα− siβ, we find ourselves in the situation reviewed at the beginning of this
paragraph, except with i replaced by i+1. By induction (and the fact that R′ is complete
and separated in the s-adic topology), this completes the proof of the Lemma. ©

§3.8. We continue with the notation of the previous §.
Lemma: Suppose that there exist units ux, uy ∈ R× such that xux = x, yuy = y, and
uxuy ∈ A×. Then it follows that ux = uy = 1.

Proof: As in the previous §, we prove the Lemma with R and A replaced by their
completions R′ and A′. Suppose that we know that ux ≡ 1, uy ≡ 1 modulo siR′,
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for some nonnegative integer i. Let dx = 1 − ux; dy = 1 − uy. Since xdx = 0,
ydy = 0, it follows that we can write dx(mod si+1R′) (respectively, dy(mod si+1R′))
as a power series in positive powers of y (respectively, x) with coefficients in siA′/si+1A′.
Moreover, dxdy = 1 − ux − uy + uxuy = dx + dy + (uxuy − 1). It thus follows that
(uxuy − 1) ∈ A′ ⋂ siR′ = siA′, hence that dx +dy ∈ siA′ + si+1R′. But from the represen-
tation of dx(mod si+1R′) and dy(mod si+1R′) as power series of the form just described,
it thus follows that dx, dy ∈ si+1R′. By induction (and the fact that R′ is complete and
separated in the s-adic topology), this completes the proof of the Lemma. ©

§3.9. We now consider a slightly different definition of an “admissible covering,” which
is essentially the same as that of [19]. Let S be a scheme. Let (f : C → S, μf ⊆ C) and
(h : D → S, μh ⊆ D) be symmetrically pointed stable curves. Then we make the following
definition

Definition: A morphism π : C → D will be called an HM-admissible covering if it
satisfies conditions (2) through (5) of the definition of a log admissible covering, as well as
the following condition, consisting of two parts, which we refer to together as “condition
(1′)”: π is étale, except:

(1′A) over μh, where it exhibits tame ramification

(1′B) over the singular points: if s ∈ S, λ is a node of Cs, and ν = π(λ), then
there exist a ∈ msh

S,s, x, y ∈ msh
C,λ, and u, v ∈ msh

D,ν , such that xy = a,
uv = ae, u = xe, v = ye (for some natural number e (necessarily
less than d) such that e ∈ O×

S,s) and such that x, y (respectively, u, v)

generate msh
f−1(s),λ (respectively, msh

h−1(s),ν). Here, by “msh,” we mean

the maximal ideal of “Osh,” the strict henselization of the local ring in
question.

Remark 1: Suppose that condition (1′B) is satisfied. Then let us assume that we are
given elements u′, v′ ∈ msh

D,π(c) and b′ ∈ msh
S,s that satisfy u′v′ = b′ and that generate

msh
h−1(s),d. Then we claim that there exist x′, y′ ∈ msh

C,c, together with a′ ∈ msh
S,s that

satisfy (x′)e = u′; (y′)e = v′; x′y′ = a′. Indeed, this follows from the fact that the
unordered pair (u′, v′) differs from the unordered pair (u, v) by multiplication by units
(Lemma 7). Taking eth roots of these units (which is possible precisely because we are
working in the strict henselizations), then multiplying by the original x, y, and a proves
the claim.

Remark 2: Note that unlike in [19], p. 57, in condition (1′B) above, we use strict henseliza-
tions rather than completions. The main reason for this is that strict henselizations are
often technically easier to work with. Moreover, whether one uses strict henselizations or
completions of strict henselizations (i.e., one wants the residue field to be separably closed)

22



in condition (1′B) makes no difference. Indeed, this follows immediately from the argu-
ment of the preceding Remark: i.e., whether or not condition (1′B) holds is independent
of which u, v, and b one chooses downstairs; thus, if one knows that a “good” set of u, v,
and b exist once one passes to the completion of the strict henselization, then it follows
that a “good” set already exists in the strict henselization.

§3.10. We retain the notations of the preceding §. Let π : C → D be an HM-
admissible covering. We would now like to define a canonical log structure on S (determined
completely by π), over which π will extend to a log admissible covering πlog. First let us
denote by Mup

S (respectively, Mdn
S ) the monoid which forms the log structure on S obtained

by pulling back that of MSlog

g,r (respectively, MSlog

q,s) via the classifying morphism for
(f : C → S, μf ) (respectively, (h : D → S, μh) ). Let Mup

C (respectively, Mdn
D ) denote the

monoid which forms the log structure on C (respectively, D) obtained by pulling back that
of the universal symmetric stable log-curve. Next let us focus attention at a node λ ∈ Cs.
Let ν = π(λ). Let us suppose that we have x, y, u, v, a, e as in Condition (1′B) above. Let
b = ae, so uv = b. Let us choose sections (in an étale neighborhood of λ) log(x), log(y) of
Mup

C , and a section log(a) of Mup
S such that log(x) + log(y) = log(a), and such that under

the exponential map, log(x), log(y), and log(a) map to x, y, and a, respectively. Note that
by Lemma 8, these properties determine log(x), log(y), and log(a) (as a triple) uniquely.
Similarly, we choose sections log(u), log(v), and log(b).

We would like to define a new log structure, whose monoid we denote by MS , on S.
To do this, we note that, étale locally on S near s, the log structure Mup

S (respectively,
Mdn

S ) has a chart (in the sense of [21], §2.9) whose generators are indexed by the nodes
on Cs (respectively, Ds). More concretely, we may take, for the generator indexed by the
node λ (respectively, ν), the element log(a) (respectively, log(b)) just defined. We then
define MS to be the log structure associated to the following quotient monoid:

(Mup
S × Mdn

S )/ ∼

where the equivalence relation “∼” is that generated by requiring that (0, log(b)) ∼ (e ·
log(a), 0). By Lemmas 7 and 8, everything that we are doing is canonical, so even though we
defined MS étale locally on S, (the log structure defined by) MS descends to our original
S. This completes the construction of MS . Note that we have canonical morphisms
Mup

S → MS and Mdn
S → MS .

Now let us denote by (C,MC) (respectively, (D,MD)) the log scheme obtained as the
fiber product (C,Mup

C ) ×(S,Mup
S

) (S,MS) (respectively, (D,Mdn
D ) ×(S,Mdn

S
) (S,MS)). We

would like to extend the morphism π to a morphism of log schemes

πlog : (C,MC) → (D,MD)

over (S,MS) which is a log admissible covering. We do this as follows. First note that away
from the nodes, π extends naturally to πlog since the only substantive part (i.e., not pulled
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back from S) of the log structure is constituted by the divisors of marked points, which are
carried to each other (by the definition of an HM-admissible covering). Moreover, away
from the nodes, the log morphism πlog that we obtain is log étale, by condition (1′A) of
the definition of an HM-admissible covering. Thus, it remains to deal with the nodes. We
can work étale locally, as long as we do things canonically. Thus, we focus attention at a
node λ of Cs, as above. Then the portion of the log structure of MD that does not come
from MS is generated (in a neighborhood of ν) by log(u) and log(v). Thus, it suffices
to specify what happens to log(u) and log(v) under (πlog)−1, and to check that what we
specify satisfies the relevant relations. We do this as follows: we send log(u) to e · log(x)
and log(v) to e · log(y). The only relation to be checked is log(u) + log(v) = log(b), but
this is clearly preserved (by the definition of MS !). By Lemmas 7 and 8, everything is
canonical, so this morphism MD → MC descends to C. Moreover, by [21], Theorem 3.5,
it is clear that the morphism MD → MC thus defined is log étale. Finally, since e ≤ d,
it follows that the log morphism πlog : (C,MC) → (D,MD) satisfies condition (1) of the
definition of a log admissible covering.

§3.11. We summarize the above discussion as follows.

Definition: We shall call the log structure MS on S the canonical log structure associated
to the (HM-)admissible covering π.

Proposition: A morphism π : C → D between symmetrically pointed stable curves
(f : C → S, μf ⊆ C) and (h : D → S, μh ⊆ D) is an HM-admissible covering if and only if
it is an admissible covering in the sense of Definition 6.

Proof: We have just shown the (nontrivial) “only if” part. The “if” part is trivial:
it follows immediately by writing out condition (1) of the definition of a log admissible
covering, i.e., what it means to have a log étale morphism. ©

§3.12. Before going on to the next subsection, we would like to consider briefly how
admissible coverings behave over discrete valuation rings. Let S = Spec(A), where A is a
strict henselian discrete valuation ring.

Lemma: Let A be a strict henselian discrete valuation ring such that n ∈ A×. Let
s ∈ A be a uniformizer. For each natural number i ≥ 1, let Ri be the strict henselization
of A[X,Y ]/(XY − si) at the maximal ideal m = (x, y, s) (where x, y are the images of
X, Y in Rn). (Here X and Y are indeterminates.) Let Wi = Spec(Ri) − {m}. Then
π1(Wn) ∼= Z/nZ, and the universal cover W∼

n of Wn is W1 with the map W∼
n → Wn

induced by mapping x to xn and y to yn.

Proof: The map W1 → Wn is clearly finite étale with W1 connected. On the other hand,
R1 is a regular local ring, so π1(W1) is trivial. The lemma follows. ©

§3.13. We continue with the notations of the preceding §. Let (f : C → S, μf ⊆ C)
and (h : D → S, μh ⊆ D) be symmetrically pointed stable curves over S that are smooth
over the generic point η of S. Let πη : Cη → Dη be an admissible covering over η. Then
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Lemma: There is at most one extension of πη to an admissible covering π : C → D
over S. If d! ∈ A×, then (after possibly replacing A by a tamely ramified extension) there
exists an admissible covering π : C → D that extends πη.

Proof: The uniqueness statement follows immediately from the fact that Cη is schemat-
ically dense in C. Now we consider existence: Let C′ → S be the normalization of D
in Cη. By Abhyankar’s lemma, we may, after possibly replacing A by a tamely ramified
extension, assume that C′ → D is not ramified over the generic points of the special fibre
of D. By purity of the branch locus, the only places where C′ → D might not be étale are
over μh and over the singular points of Ds (where s, as usual, is the special point of S).
By Abhyankar’s lemma (and the fact that d! ∈ A×), we have tame ramification over μh,
so we need only deal with the singular points of Ds. But at the singular points, it follows
from the Lemma of the preceding § that C′ → D extends to an admissible covering, and
C′ = C. ©

§3C. Global Moduli

§3.14. Let S be a noetherian scheme. Let f : X → S be a flat, proper morphism. Let
L be a relatively ample line bundle on X. Then we have the following

Lemma: Let φ : F → G be a morphism of coherent sheaves on X. Suppose that G is flat
over S. Then there exists a unique closed subscheme Z ⊆ S such that for every morphism
T → S, we have φT = 0 (where the subscript denotes the result of base-changing from S
to T ) if and only if the morphism T → S factors through Z.

Proof: By uniqueness, it suffices to prove the Lemma Zariski locally on S. Then there
exists an n such that F(n) (where F(n) = F ⊗OX

L⊗n) is generated by global sections.
Thus, it suffices to prove the Lemma in the case F = OX . Moreover, if n is sufficiently
large, then f∗OX(n) and f∗G(n) are vector bundles on S. Let α : f∗OX(n) → f∗G(n) be
the morphism of vector bundles induced by twisting, then pushing forward φ. Let Z be
the zero locus of α. Then Z has the property asserted in the statement of the Lemma. ©

Corollary: Let F and G be closed subschemes of X, and suppose that F is flat over
S. Then there exists a closed subscheme Z ⊆ S such that for every morphism T → S, we
have FT ⊆ GT (where the subscripts denote the result of base-changing from S to T ) if
and only if the morphism T → S factors through Z.

Proof: Apply the above Lemma to the morphism J → OF , where G = V (J ). ©

§3.15. Suppose now that (f : C → S, μf ⊆ C) and (h : D → S, μh ⊆ D) are
symmetrically pointed stable curves. Suppose that we are given an S-morphism π : C → D.
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Lemma: There exists a unique subscheme Z ⊆ S such that for any morphism T → S,
πT : CT → DT satisfies conditions (2), (3), and (4) of the definition of a log admissible
morphism if and only if T → S factors through Z.

Proof: For finiteness (condition (2)), one notes that there exists a closed set H ⊆ C such
that π restricted to C −H is quasi-finite, while for x ∈ H, the dimension of π−1π(x) at x
is nonzero. Then taking Z2 = S − f(H) (which is open in S) takes care of condition (2).
Thus, we may assume that π is finite. Note that it then follows (by the local criterion for
flatness) that π is flat over the smooth locus of h : D → S. Then let us take a collection
of nonintersecting sections ρ1, . . . , ρN of h : D → S at whose images h is smooth and such
that every irreducible component of every fiber of h has a ρi passing through it (note that
one can always find such ρi étale locally on S). Then Ki

def= C ×D,π,ρi
S is finite and

flat over S. Moreover, condition (3) is equivalent to the condition that all the Ki be of
degree d over S. Thus, taking the open subscheme Z3 ⊆ S over which all the Ki have
degree d takes care of condition (3). Finally, we can take care of Condition (4) by means
of Corollary 14 (in the previous §). ©

§3.16. Suppose now that (f : C → S, μf ⊆ C) and (h : D → S, μh ⊆ D) are
symmetrically pointed stable curves, and that we are given an S-morphism π : C → D
satisfying conditions (2), (3), and (4), of the definition of a log admissible covering. Now
let us note that the fact that condition (4) is satisfied means that π automatically extends
uniquely to a log morphism πlog over the smooth locus of h : D → S, for any choice of
log structure on S. Thus, we can consider the morphism dπ : π∗ΩD/S(μh) → ΩC/S(μf ) of
differentials with logarithmic poles at the marked points. Let us denote by ωC/S the relative
dualizing sheaf of C over S. Note that ωC/S(μf ) is naturally isomorphic to ΩClog/Slog .
Indeed, this follows immediately from computing dualizing sheaves in the universal case
C → Mg,r. Thus, we have a natural morphism

ΩC/S(μf ) → ΩClog/Slog = ωC/S(μf )

which is an isomorphism outside the singular locus of f : C → S. In other words, if
we denote the zero set of this natural morphism by Csing, then Csing ⊆ C is a closed
subscheme, and C − Csing ⊆ C is precisely the open set of points at which f : C → S is
smooth.

Since the smooth locus of f : C → S is schematically dense in C, it follows that if
there exists a morphism ψ : π∗ωD/S(μh) → ωC/S(μf ) that extends dπ then it is unique.
We shall refer to an isomorphism ψ : π∗ωD/S(μh) → ωC/S(μf ) that extends dπ as a log
extension of dπ.

Lemma: There exists a unique subscheme Z ⊆ S such that for any T → S, dπT admits
a log extension if and only if T → S passes through Z.
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Proof: Let Z1 ⊆ S be the subscheme such that for any T → S, (π∗ωD/S(μh))|T ∼=
(ωC/S(μf ))|T ⊗OT

N (for some line bundle N on T ) if and only if T → S factors through
Z1. (See [3], Theorem 7.3, for the existence of such a Z1.) By restricting to Z1, we may
assume that π∗ωD/S(μh) and ωC/S(μf ) are already isomorphic. Let ρ : S → C be a section
such that f is smooth at ρ, and h is smooth at π ◦ ρ. By passing to an open subset of S,
we may assume that ρ∗(dπ) is an isomorphism. Let ψ be that isomorphism of π∗ωD/S(μh)
and ωC/S(μf ) whose restriction to ρ is equal to ρ∗(dπ). The fact that there exists a Z
as asserted in the statement of the Lemma then follows from applying Lemma 14 to the
difference of the two morphisms π∗ΩD/S(μh) → ωC/S(μf ) (one obtained from dπ, the
other from ψ). ©

Suppose that dπ admits a log extension. Then it follows immediately from direct
calculation of ωC/S at a smooth point and at a node that condition (5) of the definition
of a log admissible morphism is satisfied.

§3.17. Before we can continue, we need to make certain observations concerning the
log structure of a symmetrically pointed stable log-curve f log : Clog → Slog. As before, we
denote by MC the étale monoid on C defining the log structure of Clog, and by NC the
quotient MC/O×

C . Let ν ∈ Csing be a node. Then we make the following

Definition: We shall call an (unordered) pair of elements (α, β) of Γ(C,NC) a separating
pair at ν if α · β ∈ Γ(S,NS), and, moreover, (étale locally at ν), there exist sections α̃, β̃

of MC such that α̃ (respectively, β̃) projects to α (respectively, β) in NC , and moreover,

the images of α̃ and β̃ under the morphism MC → OC (that forms the log structure) map
into and generate the maximal ideal of OCf(ν),ν .

Note that if (α, β) forms a separating pair, then it follows from the definitions that both
α and β necessarily belong to ΓC ⊆ NC , at least in a neighborhood of ν.

It is not necessarily the case that a separating pair at ν exists, even étale locally on
the base. However, we have the following result:

Proposition: Suppose that removing ν from Cf(ν) breaks Cf(ν) up into two separate
connected components. Then, étale locally on S, there exists a separating pair α, β ∈
Γ(C,ΓC) at ν.

Proof: It suffices to prove this in the universal case. Therefore, we may assume that S
is étale over Mg,r. In fact, by basic properties of étale sheaves, we may even assume that
S is the completion of Mg,r at the point defined by Cf(ν), and that the log structure on
S is that log structure pulled back from the classifying morphism S → Mg,r. Thus, MC

injects into OC . In an étale neighborhood of ν, there exist elements x, y of mC,ν (i.e., the
maximal ideal of OC,ν) and t of mS,f(ν) such that xy = t, and such that x, y generate
mCf(ν),ν

. We then define α as follows: In a neighborhood of ν where x is defined and there
are no nodes other than ν, we let α be the element of NC defined by x ∈ MC ⊆ OC . Away
from ν, we define α as follows: Over the connected component where x is not identically
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zero, we take α to be the trivial section of NC . Over the connected component where x is
identically zero, we take α to be the section of NC defined by t ∈ MC ⊆ OC . It is easy to
see that α, defined in this way is well-defined and forms a section of ΓC . We define β by
reversing the roles of x and y. It is clear that (α, β) then forms a separating pair at ν. ©

§3.18. We continue with the notation of the preceding §. So what happens when the
node ν does not satisfy the hypotheses of the preceding Proposition? This happens when
the dual graph of Cf(ν) has a loop. In this case, however, it is easy to see that there exists
a finite étale covering of degree two: φf(ν) : C̃f(ν) → Cf(ν) such that

(1) φ−1(ν) consists of two points ν1 and ν2

(2) over Cf(ν) − ν, C̃f(ν) consists of two disjoint copies of Cf(ν) − ν.

Moreover, étale locally on S, there exists a finite étale covering of degree two φ : C̃ → C
whose restriction to f(ν) is φf(ν). Let us equip C̃ with the log structure pulled back from
C, and denote the resulting log scheme by C̃log. Moreover, we let Γ

C̃
= φ∗ΓC . Then we

have the following result:

Proposition: Étale locally on S, there exist elements α, β ∈ Γ(C̃,Γ
C̃

) that form a
separating pair at both ν1 and ν2.

Proof: The proof is completely analogous to the proof of the Proposition in the preceding
§. ©

§3.19. Suppose now that (f : C → S, μf ⊆ C) and (h : D → S, μh ⊆ D) are
symmetrically pointed stable curves, and that we are given an S-morphism π : C → D
satisfying conditions (2), (3), (4), and (5) of the definition of a log admissible covering. Let
Mup

S and Mdn
S be as in §3.10. Let Nup

S = Mup
S /O×

S ; and Ndn
S = Mdn

S /O×
S . Also, we have

subsheaves of generators Γup
S ⊆ Nup

S , and Γdn
S ⊆ Ndn

S , as defined in §3.3. Since Γup
S and

Γdn
S are constructible sheaves of sets on S, it follows that they can be represented ([28], p.

160) by quasi-finite étale algebraic spaces over S; in the following we shall identify these
sheaves with the spaces that represent them. Let Δup

S be the subsheaf of Nup
S obtained by

considering sums of d sections of Γup
S . Let Z1 → S be the quasi-finite étale algebraic space

over S parametrizing morphisms

Γdn
S → Δup

S

that preserve the zero section. Note that Z1 need not be a separated S-scheme.

Let us focus attention on a geometric point s of S. Let us assume that we are given a
collection γ1, . . . , γN ∈ Γ(S,Γdn

S ) such that the morphism of sheaves of sets {1, . . . , N} →

28



Γdn
S given by mapping i to γi is surjective, and N is equal to the number of nodes of

Ds. (One can always find such a collection of γi’s by étale localization at s.) Thus, over
Z1, we have a tautological morphism Σ : Γdn

S |Z1 → Δup
S |Z1 , together with sections γi ∈

Γ(Z1,Γdn
S ) ⊆ Γ(Z1, N

dn
S ), and sections γ′

i = Σ(γi) ∈ Γ(Z1, N
up
S ). Let Lγi

(respectively,
Lγ′

i
) be the line bundle on Z1 corresponding to the O×

Z1
-torsor obtained by considering

liftings of γ (respectively, γ′) to a section of Mdn
S (respectively, Mup

S ). Let Z2 → Z1 be the
space of N -tuples of isomorphisms Lγi

∼= Lγ′
i

over Z1. Thus, Z2 is a Gm-torsor over Z1.
Note that if we know that π : C → D is admissible, then we obtained a natural section
of Z2 in the course of constructing the canonical log structure on S. More concretely, in
the notation of §3.10, the morphisms Γdn

S → Δup
S and Lγi

→ Lγ′
i

are those induced by the
morphism Mdn

S → Mup
S given by log(b) �→ ∑

e · log(a), where the sum is over all nodes
λ of Cs that map to the node in question ν (i.e., the node for which b is a deformation
parameter) of Ds.

Let Z3 ⊆ Z2 be the closed sub-algebraic space over which the tautological isomor-
phisms Lγi

→ Lγ′
i

are compatible with the exponential morphisms Lγi
→ OZ2 and

Lγ′
i
→ OZ2 of the log structures Mdn

S and Mup
S . Let Mad → OZ3 be the log struc-

ture on Z3 associated to the largest quotient monoid Q of (Mup
S × Mdn

S )|Z3 such that the
following diagram commutes:

Lγi
|Z3 −→ Mdn

S |Z3

(0,id)−→ (Mup
S × Mdn

S )|Z3 −→ Q⏐⏐� ⏐⏐�id

Lγ′
i
|Z3 −→ Mup

S |Z3

(id,0)−→ (Mup
S × Mdn

S )|Z3 −→ Q

Thus, we obtain a log algebraic space (Z3,M
ad), together with logarithmic morphisms

(Z3,M
ad) → (Z3,M

up
S |Z3) → MSlog

g,r , and (Z3,M
ad) → (Z3,M

dn
S |Z3) → MSlog

q,s , which
thus determine log-curves Clog

Z3
→ (Z3,M

ad) and Dlog
Z3

→ (Z3,M
ad) (whose underlying

curves are C → S and D → S, pulled back to Z3). Let us denote the monoids defining the
log structures on Clog

Z3
and Dlog

Z3
by MC and MD, respectively. Thus, as usual, we obtain

sheaves NC , ΓC , ND, and ΓD.

§3.20. We maintain the notation of the preceding §. Let us focus attention on a node
ν of Ds. Let us assume that we have a separating pair (α, β) at ν (for the log-curve
Dlog

Z3
→ (Z3,M

ad)). Also, let us assume that γ
def= α ·β is equal to the image of γ1 in Mad.

Let Zν
4 → Z3 be the quasi-finite étale algebraic space of pairs of sections α̃, β̃ of Γd

C |Z3 such
that α̃ · β̃ = α ·β. (Here we use the fact that the push-forward of a constructible sheaf by a
proper morphism is again constructible – see, e.g., [28], p. 223, Theorem 2.1.) Let Lα and
Lβ be the O×

DZ3
-torsors of liftings to sections of GD of α and β, respectively. Similarly,

we have L
α̃

and L
β̃

on OCZ3
. Let Zν

5 → Zν
4 be the relative scheme parametrizing pairs of

isomorphisms φ : π∗Lα
∼= L

α̃
and ψ : π∗Lβ

∼= L
β̃

that are compatible with the exponential
morphisms of the log structures of Clog and Dlog, and such that the composite morphism
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f∗Lγ
∼= π∗(Lα ⊗ Lβ)

φ⊗ψ−→ L
α̃
⊗ L

β̃
∼= f∗Lγ

(where the two isomorphisms at either end are those induced by the equalities α · β =
γ = α̃ · β̃) is the identity morphism. Note that if we know that π : C → D is admissible,
then we automatically obtain canonical α̃, β̃, φ, and ψ by considering the morphism of log
structures (that we get automatically from Proposition 11).

Of course, in general, a separating pair (α, β) might not exist. But just as in Proposi-
tion 18, we can always find such a pair by passing to an appropriate double covering of D.
Then it is easy to see that we can still define a Zν

5 as above (by working with the double
coverings of C and D). Thus, we obtain Zν

5 ’s for every node ν on Ds. Let Z6 → Z3 be
the product over Z3 of the various Zν

5 , as ν varies over the nodes of Ds. Then we have the
following

Lemma: The morphism π|Z6 : C|Z6 → D|Z6 is an admissible covering.

Proof: Indeed, it suffices to check condition (1′B) of the definition of an HM-admissible
covering (§3.9). But this follows immediately from considering local generators (near a
node) of the line bundles Lα, Lβ , L

α̃
, and L

β̃
above, and writing out what it means to give

morphisms φ and ψ (as in the definition of Zν
5 ) that are compatible with the exponential

morphisms of the log structures, and whose tensor product φ ⊗ ψ satisfies the condition
specified in the definition of Zν

5 . ©

§3.21. We maintain the notations of the preceding §. Now that we know that π|Z6 is
admissible, we can consider the canonical morphisms Γdn

S → Δup
S ; Lγi

→ Lγ′
i
; Lα → L

α̃
;

Lβ → L
β̃

arising from the logarithmic morphisms obtained over the canonical log structures
of §3.10, 3.11. Let Z7 → Z6 be the open sub-algebraic space on which the canonical
Γdn

S → Δup
S agrees with the tautological Γdn

S → Δup
S given by the definition of Z1. Let

Z8 ⊆ Z7 be the closed sub-algebraic space on which the canonical Lγi
→ Lγ′

i
agrees with

the tautological Lγi
→ Lγ′

i
given by the definition of Z2. Similarly, we let Z9 ⊆ Z8 be

the sub-algebraic space on which the canonical α̃; β̃; Lα → L
α̃
; Lβ → L

β̃
agree with the

tautological α̃; β̃; Lα → L
α̃
; Lβ → L

β̃
given by the definitions of Zν

4 and Zν
5 . Thus, in

summary, we have proven the following:

Lemma: Let T → S be a morphism of schemes. Then πT : CT → DT is admissible if
and only if T → S factors through Z9. Moreover, this factorization of T → S through Z9

is unique. In particular, the algebraic space Z9 is, in fact, separated over S. Finally, if d!
is invertible on S, then Z9 is even a closed subscheme of S.

Proof: Indeed, it suffices to prove the final statement. This follows by noting that Lemma
13 implies that the morphism Z9 → S is proper. Since it is also a monomorphism, it
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follows that it is quasi-finite, hence (by Zariski’s main theorem) finite. Thus, Z9 is a closed
subscheme of S. ©

Note finally, that Z9 comes equipped with a canonical log structure, i.e., the log structure
associated to the admissible covering π|Z9 .

Remark: In fact, it is not difficult to show (although we will not use this fact) that the
morphism Z9 → S is open (i.e., the image of an open set is open). However, even when d!
is invertible on S, it is not necessarily the case either that Z9 and S coincide as sets, or
that Z9 ↪→ S is an open immersion. Indeed, below (in §3.24), we shall construct examples
(where d! is invertible on S) of points of S which are not in Z9, as well as of cases where
the nilpotent ideal defining the closed subscheme Z9 ⊆ S is nonzero.

§3.22. We are now ready to state the main Theorem of this Section:

Theorem: Fix nonnegative integers g, r, q, s, d such that 2g − 2 + r = d(2q − 2 + s) ≥ 1.
Let A be the stack over Z defined as follows: for a scheme S, the objects of A(S) are
admissible coverings π : C → D of degree d from a symmetrically r-pointed stable curve
(f : C → S;μf ⊆ C) of genus g to a symmetrically s-pointed stable curve (h : D → S;μh ⊆
D) of genus q; and the morphisms of A(S) are pairs of S-isomorphisms α : C → C and
β : D → D that stabilize the divisors of marked points such that π ◦α = β ◦π. Then A is a
separated algebraic stack of finite type over Z. Moreover, A is equipped with a canonical log

structure MA → OA, together with a logarithmic morphism (A,MA) → MSlog

q,s (obtained

by mapping (C;D;π) �→ D) which is log étale (always) and proper over Z[ 1
d! ].

Proof: Indeed, we start with W log def= MSlog

g,r ×Z MSlog

q,s . We consider the Hilbert stack
H → W (i.e., H → W is a relative scheme) of morphisms from the tautological r-pointed
curve of genus g to the tautological s-pointed curve of genus q. Applying Lemmas 15 and
16, we obtain a sub-algebraic stack S ⊆ H, to which we can apply the constructions of
§3.19. Finally, we have the stack Z9 → S (which was constructed étale locally on S, but
which clearly descends back down to the original S by Lemma 21). This gives us our
A. The fact that the morphism (A,MA) → MSlog

q,s is log étale is an exercise in tracing
through the definitions of the various log structures involved. The assertion on properness
then follows from Lemma 13. ©

Remark: Applying the construction of [11], Chapter 1, §4.10, to A, one obtains a coarse
moduli space Ac. Moreover, over Z[ 1

d! ], Ac is a projective scheme: Indeed, let Mc be
the coarse moduli space associated to MSq,s. It is well-known (at least in characteristic
zero – see [23]) that Mc is a normal projective scheme. Then by the above Theorem,
Ac → Mc is proper. Also, it is clear (by considering the number of possibilities for an
admissible morphism between two given stable curves) that Ac → Mc is quasi-finite. Thus,
by Zariski’s main theorem, it follows that Ac → Mc is finite. Thus, Ac is a projective
scheme.
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§3.23. Finally, just as in [19], p. 62, we can make explicit the completion of a local ring
of A. Let k be an algebraically closed field. Let A = W (k), the ring of Witt vectors with
coefficients in k. Let π : C → D be an admissible covering over k. Let us denote by [π] ∈
A(k); [C] ∈ MSg,r(k); [D] ∈ MSq,s(k) the corresponding k-valued points of the respective
moduli stacks. Let O[π] (respectively, O[D]) be the completion of the strict henselization
of A (respectively, MSq,s) at [π] (respectively, [D]). Suppose that D has exactly N nodes,
which we number from 1 to N . Thus, we have a noncanonical isomorphism

O[D]
∼= A[[t1, . . . , tN , s1, . . . , s3q−3+s−N ]]

where the t’s and s’s are indeterminates; and ti defines a universal deformation parameter
for the ith node on D. Suppose that C has ni nodes over the ith node on D, which we
label (i, 1) through (i, ni). Suppose that the ramification index of (either branch of) C
over D at the node (i, j) is ei,j . Then

O[π]
∼= O[D][{ti,j}]/(tei,j

i,j − ti)

where we allow i to run from 1 to N , and j to run from 1 to ni. The canonical log
structure at [π] is the log structure associated to the quotient monoid of the free monoid on
the symbols {log(ti,j); log(ti)} (where i and j vary as before) by the equivalence relation
generated by log(ti) = ei,j · log(ti,j). The exponential morphism of the canonical log
structure maps the symbol log(ti,j) to (the image in O[π] of) ti,j and the symbol log(ti) to
(the image in O[π] of) ti.

This sort of explicit structure result gives us the following:

Corollary: Let As ⊆ A be the open substack where the curves C and D of the tau-
tological admissible covering π : C → D are smooth. Then As is smooth over Z and
schematically dense in A. Moreover, A is flat over MSq,s; reduced; and its normalization
N is smooth over Z and flat over MSq,s. Thus, we have a natural inclusion As ↪→ N .
Finally, the complement of As in N is a divisor with normal crossings. We shall refer to
these divisors as the divisors at infinity of N .

§3.24. We maintain the notations of the preceding §. In this §, we would like to
construct examples showing the extent to which (in the notation of Lemma 21) Z9 	= S:

Example 1: First, we show how to construct k-valued points of Z9 that are not in S.
Namely, we consider admissible π : C → D such that D has a node ν over which two
distinct indices of ramification e and e′ occur (i.e., e 	= e′). Let λ (respectively, λ′) be
the point of C where the index of ramification e (respectively, e′) occurs. Let us assume
(for simplicity) that ν sits on two distinct irreducible components ID and JD of D. Let
IC (respectively, JC) be the irreducible component of C containing λ that lies over ID

(respectively, JD). Similarly, we define I ′
C and J ′

C for λ′. Let C̃ be the curve obtained
from C as follows: C̃ is exactly the same as C except at λ and λ′; there we glue IC (at λ)
to J ′

C (at λ′) and I ′
C (at λ′) to JC (at λ). Then we have a map π̃ : C̃ → D (induced by
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π) which satisfies conditions (2) through (5) of the definition of a log admissible covering,
but is obviously not admissible. (In fact, if e ≡ e′ (mod p) (where p = char(k)), then dπ′

even admits a log extension in the sense of §3.16. Of course, e ≡ e′ (mod p) is impossible
if d! ∈ k×.)

Example 2: Let B = k[ε]/(ε2). Let S = Spec(B); let s ∈ S(k) be the unique point. Let
Dε = D×k S; (μh)ε = (μh)×k S ⊆ Dε, where μh ⊆ D is the divisor of marked points in D.
We would like to consider morphisms πε : Cε → Dε from a symmetrically pointed stable
curve (fε : Cε; (μf )ε ⊆ Cε) to (Dε; (μh)ε) such that πε|s = π; and πε satisfies conditions
(2) through (5) of the definition of a log admissible morphism. By deformation theory, it
follows that the isomorphism classes of such πε are in one-to-one correspondence with the
elements of some finite-dimensional k-vector space V , which can be computed by means of
local computations at the nodes. In fact, it is not difficult to calculate V explicitly. One
thus obtains that

dimk V =
∑
i,j

2(ei,j − 1) + sgn(ei,j − 1)

where i, j run over all i and j as allowed in §3.23, and sgn(0) = 0; sgn of a positive number
is 1. On the other hand, the subspace of V corresponding to admissible coverings πε is (by
what we did in §3.23) of dimension

∑
i,j sgn(ei,j − 1), i.e., in general, it is much smaller

than all of V . Thus, we see that even at a point of S contained in Z9, the ideal defining
the closed subscheme Z9 is, in general, nonzero.

§3D. Admissible Hurwitz Coverings

§3.25. Let π : C → D be an admissible covering.

Definition: We shall call π an admissible Hurwitz covering if the genus of D is zero and
π is simply ramified over the marked points of D.

In this Section, we have been concerned with proving the very general Theorem 22 above.
In the rest of this paper, however, we will be concerned only with Hurwitz coverings (i.e.,
the sorts of coverings parametrized by the Hurwitz stacks of §1) and their degenerations,
so we shall refer to admissible Hurwitz coverings simply as admissible coverings.

§3.26. Remark: In this §, we explain why the proof of Theorem 4, p. 58 of [19] has
a fundamental gap. On p. 60 of [19], it is claimed that (in the notation of [19]) H4 will
represent the functor HU

k,b. In the notation of our Lemma 21, this essentially amounts to
the assertion that Z9 = S. Indeed, the only difference between our S and [19]’s H4 is that
H4 includes projective embedding data for C (as described on p. 59 of [19]). On the other
hand, we saw (Examples 1 and 2 of §3.24) that in general, Z9 	= S.
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To put the issue another way, [19] completely neglect the nontrivial issue of showing
that condition (1′B) of the definition of an HM-admissible covering is “scheme-like,” i.e.,
that given an S-morphism π : C → D satisfying all the conditions for an admissible
covering except (1′B), the set of s ∈ S over which πs : Cs → Ds also satisfies (1′B) has
the natural structure of a subscheme Z of S, and, moreover, that over Z, πZ : CZ → DZ

is an admissible covering. These issues occupy the bulk of our proof of Theorem 22, and
are the main reason for the introduction of log structures. Indeed, the condition that a
function defined only locally in a neighborhood of a node on C have an eth root (say, étale
locally) is in general not a very “scheme-like” condition.

For instance, let S = Spec(k[[t]]); X = Spec(k[[x, t]]), where k is an algebraically
closed field of characteristic 	= 2. We regard X as an S-scheme. Consider the condition
that the function x2 − t2 have a square root étale locally in a neighborhood of the point
x = 0. This condition is satisfied at both the special and the generic points of S. But it is
certainly not satisfied over S.

Thus, in order to obtain a nice moduli problem it is necessary to translate this sort
of local condition (i.e., condition (1′B)) into a condition which is global on the curve C.
This is precisely what is achieved by the introduction of log structures.

§3.27. Notation: We close by introducing some notation that will be of use in the
rest of this paper. Let b ≥ 4 be an integer. Let R = Z[ 1

b! ]. Relative to the notation
of the present section, we are interested in the case q = 0, s = b. We denote by ROb

(respectively, RSb) the scheme Mq,s ⊗Z R (respectively, stack MSq,s ⊗Z R), which thus
forms a compactification of the scheme ROb (respectively, stack RSb) of §1.3. By simple
combinatorial analysis, one sees that in the genus zero case, in fact, every irreducible
component of a stable curve D of genus zero over an algebraically closed field is smooth
and rational and that the graph obtained by taking the irreducible components of D as
vertices and the singular points (which necessarily join two distinct components) as edges
must have H1 = 0 (in the sense of singular homology). We shall call this graph the “graph
associated to D.”

It follows from [22] that the complement of ROb (resp. RSb) in ROb (resp. RSb),
i.e. “the divisor at infinity” of ROb (resp. RSb), is made up of irreducible components
I, where the generic point of I represents a stable curve that consists of two copies of P1

joined at one point with i of the marking points on one component and b− i points on the
other component. In the symmetrized case, the divisors at infinity are thus in one-to-one
correspondence with unordered pairs of natural numbers (i, j) such that i + j = b, i ≥
2, j ≥ 2. Thus, in the future, we shall speak of the “(i,j)-component” or “(i,j)-divisor”
(at infinity) and so on.

Let d ≥ 2 be an integer. Since we have already fixed q = 0 and s = b, Theorem 22
gives us an algebraic stack A. Let AR = A ⊗Z R. Note that by Abhyankar’s Lemma,
there is an open and closed substack CSb,d of AR parametrizing the admissible Hurwitz
coverings. Thus, CSb,d contains HRSb,d as a dense open substack (Corollary 23). By §2.9,
it thus follows that CSb,d is geometrically irreducible over R. Let COb,d → CSb,d be the
finite étale covering of degree b! obtained by ordering the marked points of the curve of
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genus 0 downstairs (i.e., the “D” of π : C → D). Let NSb,d (respectively, NOb,d) be the
normalization of CSb,d (respectively, COb,d). Finally, note that we have a commutative
diagram

NOb,d −→ NSb,d −→ Mg⏐⏐� (∗)
⏐⏐� ⏐⏐�id

COb,d −→ CSb,d −→ Mg

where the horizontal morphisms on the right assign to an admissible covering π : C → D
the curve C, and the square (∗) is Cartesian.

§3.28. Remark : The compactification of the Hurwitz scheme has many interesting
applications to the geometry of Mg. For instance, as in [27] (the Appendix to [19]), one
sees that it allows a direct algebraic proof of the connectedness of Mg. One may also note
that the proof of the properness of the compactification COb,d never uses the Semi-Stable
Reduction Theorem. Thus it follows that (at least for high characteristic) we obtain a
new, direct, elementary proof of this Theorem.

§4. Construction of the Boundary Components

§4.1. We shall refer to the irreducible components of the complement of HRSb,d in
CSb,d (respectively, NSb,d) as the “divisors at infinity” of CSb,d (respectively, NSb,d). In
this Section, we shall give an explicit construction as well as a complete combinatorial
description of the “divisors at infinity” of CSb,d. (One can then classify the divisors at
infinity of COb,d according to which divisor at infinity of CSb,d they are mapped to; un-
fortunately, however, it is not clear that the irreducibility results for divisors at infinity of
CSb,d extend to the divisors at infinity of COb,d.)

§4.2. Let S be an R-scheme. Let Xi → S, i = 1, 2 be prestable curves in the sense of
[22], i.e., they are flat and proper and have geometric fibres that are reduced, of dimenion
one, and have at most ordinary double points as singularities. Let τi : S → Xi be a section
that lands in the smooth locus. By loc. cit, Theorem 3.4, p. 181, we can glue together
the Xi’s along the τi’s to obtain a new prestable curve X → S. It is clear that this
construction is functorial, so if (Yi, ρi) satisfy the same hypotheses as the (Xi, τi), then
we obtain, by clutching, a new prestable curve Y → S as well as a morphism X → Y for
every pair of morphisms Xi → Yi, (i = 1, 2) that carry τi to ρi. It thus follows that if we
also give sections σ

(i)
1 , . . . , σ

(i)
bi

(i = 1, 2) : S → Yi that land in the smooth locus and are

disjoint from each other and from ρi, in such a way that (Yi, σ
(i)
1 , . . . , σ

(i)
bi

, ρi), (i = 1, 2)
is a (bi + 1)-pointed stable curve, and if the morphisms Xi → Yi satisfy all the conditions
for an admissible covering of degree d over (Yi, σ

(i)
1 , . . . , σ

(i)
bi

, ρi) except that:
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(1) the ramification of Xi → Yi over ρi might not be simple; however, it is
tame, and, moreover, we give sections τ

(i)
1 , . . . , τ

(i)
l , (i = 1, 2) : S → Xi

that land in the smooth locus, are disjoint from each other, map via
Xi → Yi to ρi (i = 1, 2), and are such that over each geometric point s

of S, τ
(i)
1,s; . . . ; τ

(i)
l,s are exactly the points of Xi,s which are in the inverse

image of ρi,s under Xi,s → Yi,s; moreover, the ramification index of
Xi,s → Yi,s at τ

(i)
j,s (for all j) is independent of i (for i = 1, 2);

(2) the fibres of Xi → S might not be geometrically connected, but if we
glue together X1 and X2 along τ

(1)
j and τ

(2)
j (for all j), the resulting

X → S has geometrically connected fibres;

then we may construct an admissible covering by taking for X the gluing together of X1

and X2 along τ
(1)
j and τ

(2)
j (for all j) and for Y , the gluing together of Y1 and Y2 along

ρ1 and ρ2, and for the map X → Y , the functorially associated map for the pair of maps
X1 → Y1 and X2 → Y2. In particular, note that Y is necessarily stable.

Note that instead of gluing together two “almost admissible” coverings to obtain an
admissible covering, we could just as well have glued together more than two “almost
admissible” coverings (with the appropriate conditions analogous to those above on the
data) to obtain an admissible covering. However, we shall have no need for this (only
clerically) more difficult version of the above construction in this paper.

§4.3. Lemma : Let S be an excellent Noetherian R-scheme. Let V → S be smooth
of dimension 1 with section ρ : S → V . Let U → S be smooth of dimension 1 with a finite,
flat S-morphism ϕ : U → V which is étale except over ρ where it has tame ramification.
Let W = the scheme ϕ−1S = U ×V S, where S is a V -scheme via ρ. Then if S is regular,
Wred is finite étale over S.

Proof: Using the excellence hypothesis (to ensure that taking “red” commutes with pass-
ing to completion – see EGA IV for a definition and basic facts about excellent rings), we
reduce immediately to the case where S = Spec A, where A is a complete local ring with
separably closed residue field. Let s be the closed point of S. Then let V ∧ = the completion
of V at the prime ρ(s). Let U∧ = U ×V V ∧. Now V ∧ = Spec A[[T ]], where T is an inde-
terminate such that the image subscheme of ρ has ideal generated by T . By Abhyankar’s
lemma, U∧ is the spectrum of a direct product of rings of the form (A[[T ]])[X]/(Xn − T )
where n is prime to char k(s). The result follows. ©

§4.4. Definitions : As in §1, we fix b, d, g. We define a layout L to be the following
set of data:

(1) An ordered pair of integers (iL, iR) with iL, iR ≥ 2, iL + iR = b (here
L stands for “left”, R for “right”);

(2) Two ordered chains CL and CR of iL (resp. iR) transpositions in Sd

such that if we denote by
∏

CL (resp.
∏

CR) the ordered product of the
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respective transpositions, then we have
∏

CL =
∏

CR; and such that
the subgroup of Sd generated by all the transpositions of CL and CR

acts transitively on {1, . . . , d}.

When we need to deal with several layouts at once, we shall use notation like iLL, CL
L ,

etc. to denote the various objects associated to the layout L. Let D1
L, . . . ,DnL

L (resp.
D1

R, . . . ,DnR

R ) be the domains of transitivity (including those with only one element) of
the group of permutations generated by the transpositions of CL (resp. CR). We refer
to these as the left (resp. right) domains of transitivity. The permutation

∏
CL =

∏
CR

will be called the total clutching permutation σ. The ordering of CL gives us a natural
bijection of {1, . . . , iL} (resp. {1, . . . , iR}) with CL (resp. CR). Relative to this bijection,
let Bi

L (resp. Bi
R), where i = 1, . . . , nL (resp. i = 1, . . . , nR) be the subset of {1, . . . , iL}

(resp. {1, . . . , iR}) corresponding to those transpositions that act nontrivially on Di
L. Let

bi
L (resp. bi

R) = the cardinality of Bi
L (resp. Bi

R). We call bi
L (resp. bi

R) the ith left (resp.
right) partition number of the layout. The permutation which is the ordered product of
all the transpositions of CL (resp. CR) that correspond to elements of Bi

L (resp. Bi
R)

will be called the ith left (resp. right) clutching permutation σi
L (resp. σi

R) and will also
be written

∏
Di

L
CL (resp.

∏
Di

R
CR). Note that the total clutching permutation σ is the

product of the σi
L (resp. σi

R) over i = 1, . . . , nL (resp. i = 1, . . . nR). Two layouts will be
said to be isomorphic if one can be obtained from the other by switching left and right
and/ or by conjugating all the data by a some element of Sd. It is clear that isomorphism
is an equivalence relation. We denote the (finite) set of layouts by Lb,d (or simply L when
b, d are fixed and clear) and the set of isomorphism classes of layouts by CLb,d (or simply
CL).

Given a layout L, we define its template T to be the following set of data:

(1) The ordered pair (iL, iR);

(2) The (unordered) set of “left” (resp. “right”) triples of the following sort:
Each “left” (resp. “right”) triple consists of a left (resp. right) domain
of transitivity, its associated clutching permutation, and its associated
partition number.

Let Tb,d (or simply T) be the set of templates T corresponding to all possible layouts
L. Note that we have an analogous notion of isomorphism of templates, corresponding
to switching left and right and/ or conjugating by a permutation. Let CTb,d (or simply
CT) be the set of isomorphism classes of templates. Then we have the following natural
surjections:

Φ : L −→ T

Ψ : CL −→ CT

§4.5. Theorem : The divisors at infinity of CSb,d are in natural one-to-one corre-
spondence with the elements of CT.
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Proof: The proof will consist of several steps:

Step A: Construction of divisors at infinity:

Let T ∈ Tb,d be a template. We start by constructing the “left iL-point stack”. (Of
course, the construction of the right iR-point stack is entirely analogous.) Let LROT =
RO(iL+1), where L stands for “left”, RO for “rigidified, ordered” (as usual), and T denotes
the dependence on the template. Let b1, . . . , bnL

be the left partition numbers (in any
order!) of the template T . Let us partition the set {1, . . . , iL} into disjoint subsets Ai

(where i = 1, . . . , nL) of bi elements. The sections of P1 × LROT corresponding to the
set Ai will be called sections of the ith partition. The last section will be called the
clutching section. Let πi : LROT → DRObi+1 denote the map corresponding to sending
the sections of the ith left partition (in some order) to the marking sections of DRObi+1

and the clutching section to the clutching section (recall the terminology from §1). Now
G = Sb1 × Sb2 × . . . × SbnL generically acts freely on LROT by allowing the ith factor to
act naturally on the sections of the ith partition. We define the left iL-point stack, LRST ,
to be the quotient (in the sense of stacks) of LROT by G, which is generically a scheme
(by the generic freeness of the section of G). Note that the πi’s induce natural projections
ϕi : LRST → DRSbi+1.

Now let σi ∈ Sd be the ith left clutching permutation. Let Di be the ith left do-
main of transitivity, and let di = the cardinality of Di. Then we constructed (§1.4, 1.5)
DHRSσi

bi+1,di
and a “pseudo-universal” covering:

Ci
βi−→ P1

Di
⊇ DDi

⊇ MDi
, CDi

αi ↘
⏐⏐�
Di

where CDi
∼= Di, and we write Di for DHRSσi

bi+1,di
. Recall that CDi

is the clutching
section, while MDi

(which is finite étale of rank bi over Di) is the marking divisor. Since
Di is regular, it follows by Lemma 3 that the reduced inverse image via βi of CDi

is étale
over CDi

∼= Di; let us denote this reduced inverse image by C∼
Di

. Now the question arises:
is C∼

Di
“geometric” over R in the sense that the étale covering C∼

Di
→ CDi

does not factor
through a covering obtained by tensoring up by an étale cover R∼ of R? I claim that the
answer is “yes”. Indeed, recall from Proposition 10 of §2 that the connected components
over R correspond naturally to the various ramification indices, and these components are,
in fact, geometric over R.

We are now in a position to construct the left degenerate Hurwitz stack associated
to the template T , which we we shall call LDHT . We define LDHT to be the fibred
product over LRST of the pull-backs via the ϕi of the arrow Di → DRSbi+1. It is clear
by the results of §2 that LDHT is smooth and geometrically irreducible over R. We can
also pull-back the coverings C∼

Di
→ Di to coverings C∧

Di
→ LDHT . These coverings are

étale and “geometric” in the sense used above. Therefore, by basic facts of Galois the-
ory, there exists a (noncanonical) finite étale Galois covering Λ → LDHT that dominates
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all the connected components of all the C∼
Di

(for all i) and which is geometrically irre-
ducible over R. We denote the pull-backs of the objects Ci, αi, βi,MDi

, CDi
, C∼

Di
,DDi

by
CΛ

i , γi, δi,M
Λ
i , CΛ

i , C∼,Λ
i ,DΛ

i . We thus obtain a commutative diagram:

C∼,Λ
i ⊆ CΛ

i
δi−→ P1

Λ ⊇ DΛ
i ⊇ MΛ

i , CΛ
i
∼= Λ

γi ↘
⏐⏐�
Λ

(Diagram 4.1)

where the relative dimension of Λ is iL − 2. Note that C∼,Λ
i → Λ is split (i.e., every

connected component of C∼,Λ
i maps isomorphically to Λ).

Analogously, we construct the right degenerate Hurwitz stack RDHT and, in place of
Λ, we have P (the capital Greek letter “rho”). We thus obtain a diagram:

C∼,P
i ⊆ CP

i
εi−→ P1

P ⊇ DP
i ⊇ MP

i , CP
i

∼= P

ζi ↘
⏐⏐�
P

(Diagram 4.2)

where (again) the relative dimension of P over R is iR − 2. Thus Kdef=Λ×R P has relative
dimension over R equal to b − 4. This is just the right dimension for a divisor of CSb,d.

Let us pull the Diagrams 4.1 and 4.2 back to K via the projections to Λ and P , and
denote the objects so obtained by C∼,Λ

i,K ; CΛ
i,K ; etc. Now we first glue the left and right

copies of P1 together along CΛ
i and CP

i ; using the marking divisors MΛ
i and MP

i we thus
obtain a b-pointed stable curve B → K. Let us next note that (referring to §4.4) the
irreducible components of CΛ

i (resp. CP
i ) correspond naturally to the left (respectively,

right) domains of transitivity, which is part of the information of the layout that is pre-
served in the template. Thus, there is a natural isomorphism CΛ

i
∼= CP

i . Let us glue
together

∐
i=1,...,nL

CΛ
i,K and

∐
i=1,...,nR

CP
i,K (both prestable curves) along CΛ

i and CP
i via

this isomorphism and call the resulting curve X → K. It follows from the conditions in the
definition of a layout and by what we did in §4.2, that we then obtain an admissible cov-
ering f : X → B over K. By the modular definition of CSb,d, we then obtain a morphism
K → CSb,d which we call MT . It is clear by composition with the morphism CSb,d → RSb

that MT is quasi-finite. Thus, for dimensional reasons, the closure of its image must be
an irreducible divisor of CSb,d, which is flat over R. We shall refer to this divisor as the
divisor DT associated to T . We shall also refer to any divisor of NSb,d that lies above
DT as a “divisor associated to T ”. Finally, it is clear that isomorphic templates define the
same divisor. Thus we obtain a map:

Ω : CT −→ {divisors at infinity of CSb,d}

39



Step B: Surjectivity of Ω:

Since CSb,d → RSb is flat (Corollary 23 of §3), every divisor at infinity of CSb,d lies
above a divisor at infinity of RSb,d, whose generic element is necessarily of the form given
in Diagram 3.1. Thus it suffices to see that every geometric point of CSb,d such that the
stable curve downstairs is of the form given in Diagram 3.1 (in the future, we shall call
such a covering a basic admissible covering of type (i, j), where (i, j) is as in loc. cit.) is in
the image of a geometric point of one the MT ’s. But this is obvious from the construction.

Step C: Injectivity of Ω:

It suffices to see that given any basic admissible covering, we can recover the informa-
tion contained in a template from the purely geometric data of the covering. But this is
clear, for left (resp. right) domains of transitivity correspond to the irreducible components
on the left (resp. right) hand side of the curve upstairs, associated clutching permutation
correspond to the ramification data at clutching points, and partition numbers correspond
to the number simple ramification points of each irreducible component upstairs. ©

§4.6. Any particular divisor at infinity of CSb,d will be called a Species. If (iL, iR)
is the first piece of data of a template T (see §4.4), then we call T a “template of type
(iL, iR)”. We also say that the corresponding Species is of type (iL, iR). Before going
on, it is worthwhile to enumerate the various Species of type (b − 2, 2). By the previous
Theorem, this amounts to classifying explicitly the various templates that appear for basic
admissible coverings of type (b − 2, 2).

(b-2)   points
x      x

2     points

x  x  x  x  x  .........  x  x  x  x

Let C be a component on the right hand side of the curve upstairs for such a covering.
Then either:

I. C has no “x”’s (i.e., simple ramification points); then C maps isomor-
phically to the copy of P1 downstairs;

II. C has exactly one “x”; then it is clear that C ∼= P1 and the map
downstairs must be the “squaring map”; there is one clutching point on
C, where the ramification index is two; or

III. C has exactly two “x”’s; then each of those corresponds to a transpo-
sition; up to renaming elements, these two transpositions are either:

(A) (12), (23): then C ∼= P1; there is one clutching point
on C with ramification index three; the map down-
stairs is some uniquely determined map;
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(B) (12), (12): then C ∼= P1; there is no ramification at
the clutching points, of which there are two on C; the
map downstairs is the “squaring map”;

(C) (12), (34): the degree of the map from C to the copy
of P1 downstairs would have to be four, and the de-
gree of the total ramification divisor on C would also
have to be four; thus this case is impossible by the
Riemann-Hurwitz formula.

Let us now consider the totality of components on the right. Exactly one of the following
two possibilities must hold:

(1) There are two components on the right with one “x” each and all the other components
have no “x”’s. In this case, let us consider the associated graph of the curve upstairs.
On the right, we have d − 2 vertices, each with exactly one edge protruding from it. It
follows that if the graph is to be connected (which it must be), then there can only be one
irreducible component on the left. This component is a smooth component of genus g (the
original genus) and has d − 2 clutching points, one going to each irreducible component
on the right. Of these, there is ramification of degree 2 at two clutching points (which
we shall call points of degenerate ramification), and no ramification at any of the d − 4
others. It is thus clear that in this case, the template is uniquely determined. We call
the corresponding divisor at infinity the divisor of Species 2. A typical basic admissible
covering of this Species is shown in the Pictorial Appendix.

(2) There is exactly one component on the right with two “x”’s, and all the other components
have no “x”’s. Then the component with two “x”’s is as in exactly one of the following,
corresponding, respectively, to the Cases (A) and (B) of the preceding III:

(A) It is clear that the graph of the curve upstairs is the same in in (1) above.
Thus there is only one irreducible component on the left; it is smooth
of genus g and has d − 2 clutching points, one going to each irreducible
component on the right. Of these, there is ramification of degree 3 at one
clutching point (which we shall call the point of degenerate ramification)
and no ramification at any of the d−3 others. It is thus clear that in this
case, the template is uniquely determined. We call the corresponding
divisor at infinity the divisor of Species 1. A typical basic admissible
covering of this Species is shown in the Pictorial Appendix.

(B) Let us consider the graph associated the curve upstairs. On the right,
we have d − 1 vertices; from d − 2 of them, there protrudes exactly one
edge; from the other one of them there protrude exactly two edges. Now
either those two edges end up at the same vertex on the left, or they
end up at different vertices. We thus examine each of these two cases:
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α ) The Same Vertex: Then there is only one vertex
on the left. This corresponds to a smooth, irreducible
component of genus g−1, since the loop on the graph
contributes “one” to the arithmetic genus of the curve
upstairs. There are exactly d clutching points on this
component on the left, all of which are unramified.

Of these d − 2 connect to components on the right
of type (I) in our classification above of components
of the curve upstairs, and the other 2 (which we shall
points of degenerate ramification) connect to the com-
ponent of type (III) (B) in that classification. Clearly
the template is thus uniquely determined. We call the
corresponding divisor at infinity the divisor of Species
3A. A typical basic admissible covering of this Species
is shown in the Pictorial Appendix.

β ) Different Vertices: Then it is clear that these are
the only two vertices on the left. They correspond
to two smooth, irreducible components C1 and C2.
Let gi be the genus of Ci (where i = 1, 2). If bi =
the number of “x”’s on Ci, and di is the degree of Ci

over the left hand copy of P1, then we have, by the
Hurwitz formula, 2 (gi − 1) + 2di = bi, g1 + g2 = g,
b1 + b2 = b − 2, d1 + d2 = d. The map downstairs
Ci → P1 thus has only simple ramification. The
clutching points are all unramified with one clutch-
ing point on each Ci (which we shall refer to as a
point of degenerate ramification)going to the compo-
nent of type (III) (B); the other di−1 clutching points
on each Ci go to components of type (I). Given pairs
of integers (b1, b2), (d1, d2) such that b1 + b2 = b − 2,
d1+d2 = d, with bi ≥ 0, di ≥ 1 and such that the gi’s
computed via the Hurwitz formula are nonnegative in-
tegers (for i = 1, 2) will always appear, and once the
bi’s and di’s are given, the template is clearly uniquely
determined. The corresponding divisor at infinity will
be call the divisor of Species 3B (b1, b2); (d1, d2). It
will turn out that the case when b1 = b − 2, b2 =
0, d1 = d − 1, d2 = 1 (⇒ g1 = g, g2 = 0) will be es-
pecially important; we shall call this case the divisor
of Species 3B∗. As usual, illustrations are shown in
the Pictorial Appendix.

§4.7. Let us note that among the templates of type (b− 2, 2), the Species that do not
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map via the map CSb,d → Mg of §3.27, into the boundary at infinity of Mg are exactly
Species 1, 2, and 3B (b1, b2); (d1, d2) when g1 = g, g2 = 0. Among these, it turns out that
the divisors of Species 1, 2, and 3B∗ (which constitutes a set of precisely three divisors)
will play an important role in the future. We shall refer to these three divisors as the
excess divisors.

§4.8. If F is a ring and E is a set, we shall denote by F [E] the free F -module generated
by elements of E. By Theorem 5, to every element of the set CT, one can naturally
associate a divisor, hence a divisor class of CSb,d, i.e., an element of Cl(CSb,d). We thus
obtain a map:

Σ : Z[CT] −→ Cl(CSb,d)

Later we shall show the following

Theorem: If d > 2g + 4, g ≥ 5, then the group Cl(CSb,d) is of finite type over Z, and
Σ is a surjection when tensored with Q.

Clearly it suffices to show that Pic(HRSb,d) is finite. We shall complete the proof in §6.7.

Appendix to §4

§4.9. In SGA 7, one finds an exposition of the theory of vanishing cycles for ordinary
(i.e., 0-pointed) stable curves. Although the theory of vanishing cycles for arbitrary b-
pointed stable curves is also implicit in SGA, we review it here explicitly for the sake of
clarity. In the case of b-pointed stable curves of genus zero, which is the principal case of
interest here, one can often describe the monodromy action much more explicitly than in
the 0-pointed higher genus case since the fundamental group involved is a free group.

§4.10. Let (A,m) be a strictly henselian discrete valuation ring, S = Spec A. Let

{C f−→S;σ1, . . . , σb : S → C} be a b-pointed stable curve over S. Let U = C −⋃b
i=1 σi(S).

We use the notation Uη, Uη, Us, as usual. Then we have the following

Proposition : There is a natural, surjective morphism of specialization:

πt
1(Uη, ρη)′ −→ πt

1(Us, ρs)′

where ρ : S → U is a section of f , and “t” means the tame fundamental group, and the
“prime” next to the fundamental group indicates that we are only concerned with the part
of the fundamental dealing with coverings of degree prime to the residue characteristic of
A.
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Remark: It has been pointed out by the referee that this result has already been proven
by Grothendieck in [5].

Proof: Write j : U → C for the natural inclusion. Let G = a finite group of order prime
to the residue characteristic of A. By [29], Exposé XIII, Theorem 2.4, p. 380, we have
R1

étjs ∗GUs
∼= (R1

étj∗GU )|Cs
. By the Leray spectral sequence and the proper base change

theorem, we thus see that πt
1(Us, ρs) ∼= πt

1(U, ρs) ∼= πt
1(U, ρη). The rest of the Proposition

then follows trivially. ©

§4.11. Let us now assume that C is obtained in the following fashion. We are given
a collection of generically distinct sections σ′

1, . . . σ
′
b : S → P1

S such that σ′
1(S) intersects

σ′
2(S), but all the other intersections among pairs of σ′

i are empty. Then C is obtained by
blowing up P1

S at the schematic intersection of σ′
1(S) and σ′

2(S); we thus obtain a stable

curve {C f−→S;σ1, . . . , σb} where the σi are induced by the σ′
i. Now if we fix a base section ρ

(that doesn’t intersect any of the σi), and assume (for simplicity) that we are working over
C, then πan

1 (Uη, ρη) may be described as being generated by paths γ1, . . . γb around the
various σi,η with the sole relation that γ1γ2 . . . γb = 1, i.e., a free group on b−1 generators.
On the other hand, πan

1 (Us) may be described as being generated by paths δ1, . . . , δb around
the various σi,s with the sole relations δ1δ2 = 1, δ3δ4 . . . δb = 1. An illustration of this
degeneration situation is given in the Pictorial Appendix. The morphism of specialization
is given by γi �→ δi, so the “vanishing cycle” is clearly γ1γ2 = (γ3γ4 . . . γb)−1.

Pictorial Appendix

Species 1:

   P1

   P1

(b-2)   points
x      x

2     points

genus
g

Ramification
        index:

1

1

3

point of
degenerate
ramification

one   copy
         of

(d-3)  copies
            of

Left Right

x     x

x  x  x  x  x  .........  x  x  x  x

x  x  ......  x  x
(b-2)  points
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Species 2:

   P1

   P1

(b-2)   points
x      x

2     points

genus
g

Ramification
        index:

1

1

         of

            of

Left Right

 (d-4)   copies

two    copies
2

2

x

x

x  x  x  x  x  .........  x  x  x  x

x  x  .......  x  x
(b-2)  points

Species 3A:

   P1

   P1

(b-2)   points
x      x

2     points

genus

Ramification
        index:

1

1

         of

            of

Left Right

1

1

 (d-2)   copies

one     copy

g-1

x       x

x  x  x  x  x  .........  x  x  x  x

x  x  .....  x  x
(b-2)  points
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Species 3B (b1, b2); (d1, d2):

(b-2)   points
x      x

2     points

Left Right

b    points1

b    points2

genus   g

genus   g1

2

 (d  -1)   copies
              of

P 1

 (d  -1)   copies
              of

P

1

1

2

Ramification
      index:

1

1

1

1

1

1

x  x  .......  x

x  x  .......  x

x  x  x  x  x  .........  x  x  x  x

x            x

Species 3B∗:

P 1

(b-2)   points
x      x

2     points

Left Right

genus   g

Ramification
      index:

1

1

1

1

              of
  (d-2)   copies

P 1

        one  copy
              of

P 1

(b-2)  points

points of
degenerate
ramification

1

x  x  .......  x

x  x  x  x  x  .........  x  x  x  x

x              x
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Degeneration Situation with Vanishing Cycle:

xγ

γ

 1

 2

γ   γ1 2

vanishing   cycle

 x

x

γ b

 3γ

 x

x

 b

 3

δ

δ

 x
δ

δ
 2

 1
x

degeneration

x

P 1

P 1
P 1

§5. Cohomology Calculations

§5.1. In this Section, we compute the various cohomology groups of a number of
universal objects, in preparation for the construction of the “main fibration” in the next
Section. At first, we shall work over C, so that we can use a number of analytic results;
at the end of the Section, we shall extend the results to the arithmetic situation over Z.
Thus, unless we specify otherwise, all objects are taken to be over the complex numbers
C.

Often in this Section, we shall use the language of torsors over a group; for the reader
unfamiliar with this language, we suggest [15] as a place to start.

§5.2. Let Mg = the moduli stack of smooth curves of genus g with g ≥ 5. Let
f : C → Mg be the universal curve of genus g. Let P = Pic (C/Mg) be the Picard
stack, a smooth algebraic group stack over Mg, which doesn’t necessarily represent the
Picard functor Pic (since f doesn’t admit a section), but is, instead, its étale sheafification
(see, e.g., [12] for a detailed discussion of the Picard functor); thus we have a morphism
Pic → P. Let J = Picτ (C/Mg)

ϕ−→Mg be the open subgroup which is the universal
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Jacobian. Let E = P/J be the quotient étale group stack, with geometric fibres over Mg

isomorphic Z. Thus we have the following situation:

Pic⏐⏐�
J −→ P −→ E

ϕ ↘
⏐⏐� ↙

C f−→ Mg

Now from the existence of the global bundle ω = Ω1
C/Mg

on C, or by the existence of the
degree map, one sees that E ∼= Mg × Z. Thus P splits into connected components J d,
with d ∈ Z, according to the degree. Each J d is thus J -torsor in the étale topology over
Mg, i.e., an element ηd ∈ H1

ét(Mg,J ). From the fact that P is a group stack, we see that
ηd = d η1. From the existence of ω, we see that 2(g − 1) η1 = 0. Let χ = 2(g − 1). Then if
we “change groups” for the torsor J d via the homomorphism [χ] : J → J multiplication
by χ, we obtain a new J -torsor J∼,d, which is clearly trivial. Moreover, by the Leray
spectral sequence, we see that Hi

an(J d, A) ∼= Hi
an(J∼,d, A) ∼= Hi

an(J , A) (where “an”
denotes the analytic topology) for any ring A in which χ is invertible.

§5.3. We recall the following results of [16] and [1]:

(A) Pic Mg
∼= H2

an(Mg,Z) ∼= Z, where the first isomorphism is the first
Chern class map, and Pic Mg is generated by the Hodge bundle λ.

(B) Pic C ∼= H2
an(C,Z) ∼= Z2, where the first isomorphism is the first Chern

class map, and Pic C is generated by λ and ω.

(C) Let F = R1
anf∗Z ∼= R1

anϕ∗Z. Then H1
an(Mg,F) vanishes. (In fact, in

[16], Harer makes the stronger assertion than in fact the first homology
group of F vanishes; later in a correction (whose existence is mentioned
in [17], Chapter 7) he retracts this and asserts only that the first ho-
mology group of F is torsion; but this implies that the first cohomology
group must vanish.)

(D) Pic (C ×Mg
C × . . .× C) is finitely generated for any number of factors

of C. (In fact, the result in [1] is stated only for the moduli stack of
b-pointed stable curves of genus g; but one deduces (D) easily from this
fact using elementary properties of the Picard group.)
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Recall that F is a locally constant sheaf of free Z-modules of rank 2g on Mg. Moreover,
F is endowed with a natural symplectic form E (“the intersection pairing”).

Lemma : H0
an(Mg,R2

anϕ∗Z) ∼= Z and is generated by the element corresponding to E
under the isomorphism R2

anϕ∗Z ∼= ∧2F .

Proof: Since E is not a multiple of any other form, it suffices to prove the result after
tensoring with Q. If M is the Γ-module (where Γ = πan

1 (Mg)) corresponding to F ⊗Z Q,
then since ∧2

Q ⊆ M ⊗Q M ∼= HomQ(M,M) (where the last isomorphism of Γ-modules
follows from the fact that via E, M is a self-dual Γ-module), it suffices to show that M
is an irreducible Γ-module. But this action factors through the surjection [8], p. 107,
Γ → Sp(2g,Z), and one sees from looking at well-known sets of generators that Sp(2g,Z)
is Zariski dense in Sp(2g,Q). Moreover, it is obvious that M is irreducible under the
action of Sp(2g,Q). The Lemma follows. ©

§5.4. Proposition : There exists an isomorphism A : J ∼→J ∧ (i.e., the dual abelian
stack to J ) whose corresponding alternating form is E.

Proof: This, in fact, holds over Z, so for the remainder of §5.4, we work over Z, not C.
The Proposition is well-known when there exists a section of C. Thus, let K = the quotient
field of Mg; let L be a finite Galois extension of K such that CL admits a section. We
thus obtain an isomorphism JL

∼→J ∧
L with the desired property. Since E is defined over

K, this isomorphism descends to JK
∼→J ∧

K . By [11], Remark 1.10 a), p.7, the isomorphism
extends over Mg. ©
Corollary : There exists a line bundle on J whose relative first Chern class (with
respect to ϕ) is 2E.

Proof: Pull-back the Poincaré bundle on J ×Mg
J ∧ via (1,A) : J → J ×Mg

J ∧. ©

§5.5. Proposition : The first Chern class induces a surjection c1 : Pic (J d) →
H2

an(J ,Z) and we have an exact sequence:

0 −→ Pic (Mg) ⊗Z Q −→ c1(Pic(J d)) ⊗Z Q −→ QE −→ 0

where the injection is the pull-back via J d → Mg and the surjection is the relative first
Chern class with respect ϕ.

Proof: Clear from the preceding paragraphs. At first it may appear that c1 is only
surjective up to torsion, but it follows from the Kummer and exponential exact sequences
that the cokernel of c1 is always torsion-free. ©

§5.6. Let C∼,d = C ×Mg
J d. Write ψd : C∼,d → J d. Denote by κα ∈ H2

ét(J d,Gm) the
obstruction to the existence of a universal bundle of degree d on C∼,d. Write id : J d → P
for the natural inclusion. From the Leray spectral sequence of ψd for the étale sheaf Gm,
we get an exact sequence:
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Pic(J d)⏐⏐�natural identification

H1
ét(C∼,d,Gm) −→ H0

ét(J d,R1
étψd,∗Gm)

γ−→ H2
ét(J d,Gm)

By general nonsense, κd = γ(id). From the existence of ω on C, one sees that under the
identification C∼,d ∼= C∼,d+χ (via ω), we have κd = κd+χ. On the other hand, if d > χ,
then the functor Divd of effective divisors of degree d is a Brauer-Severi stack over J d (by
which we mean that it is a projective bundle in the étale topology), whose associated class
in H2

ét(J d,Gm) is clearly κd. Thus we see that for all d, κd is a torsion element.

§5.7. Proposition : c1 : Pic (J d) → H2
an(J d,Z) is injective.

Proof: If suffices to prove that for d large, Pic (J d) is finitely generated (since the kernel
of c1 must be infinitely divisible). Now if X = C ×Mg

× . . . ×Mg
C (the d-fold product),

then we know that Pic (X ) is finitely generated. Now we have a natural finite flat map
X → Divd; hence, via the associated norm map Pic (X ) → Pic (Divd), we see that
Pic (Divd) is finitely generated. We also have a natural map π : Divd → J d (which
is a Brauer-Severi morphism), so if L is a line bundle on J d, then L ∼= π∗π∗L. Thus
π∗ : Pic (J d) → Pic (Divd) is an injection, and we are done. ©

§5.8. We now go back to working over an arbitrary base, which we denote by a sub-
script. Let X = C or J d. Then we have the following

Proposition : The natural map Pic (XZ) → Pic (XC) is injective with finite cokernel.

Proof: Injectivity follows from the fact that H0(XR,OXR
) = R for any ring R. The rest

follows from the preceding paragraph. ©

§5.9. Given any relative Brauer-Severi stack f : X → S, we obtain a bundle of
Grassmannians f∼ : X∼ → S (in the étale topology) by considering the lines in the
projective spaces of the fibres of f . Applying this construction to Divd → J d (for d > χ),
we obtain a map ψ : Gd → J d. Denote by ζ the canonical bundle on Gd for ψ. Write
PicQ( ? ) for Pic( ? )⊗Z Q. We call elements of PicQ( ? ) “virtual line bundles”. Denote
by γ ∈ PicQ (Gd) the Q-multiple ζ such that restricted to the fibres of ψ, it is the line
bundle that defines the Plücker embedding.

Definition : We shall refer to the following diagram as the main fibration :

Gd ψ−→ J d ϕ−→ Mg

We now wish to define a canonical element Θd ∈ PicQ(J d) which has relative first Chern
class with respect to ϕ equal to E. We do this as follows. Since J 0 → Mg has the canonical
identity section, we can define Θ0 by requiring that the pull-back via the identity section
be trivial. For arbitrary d, we consider μd : J d → J 0 given by composing the map
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“multiplication by χ” from J d to J dχ with the map “subtract off ω⊗d” from J dχ to J 0.
Then we define Θd to be ( 1

χ2 )μ∗
dΘ

0. Note that if χ divides d, with χ = Nd, then Θd = the
pull-back of Θ0 via the map “subtract off ω⊗N” from J d to J 0. When d is fixed, we shall
often omit it in the symbol Θd.

§5.10. Theorem : Pic (XR) is finitely generated, for X = Mg; J d; or Gd and R
= Z or C. Moreover, for such R,

PicQ Mg
∼= Q, generated by λ;

PicQ J d ∼= Q2, generated by ϕ∗λ and Θ ;

PicQ Gd ∼= Q3, generated by γ, (ϕψ)∗λ, and ψ∗Θ.

(For convenience, we shall write λ instead of ϕ∗λ, etc.) Thus via pull-back, we obtain a
filtration, which we shall refer to as the main filtration, on PicQ Gd which has subquotients
of dimension 1: 0 = F 0 ⊆ F 1 ⊆ F 2 ⊆ F 3 = PicQ Gd, where F 1 ∼= PicQ Mg, and
F 2 ∼= PicQ J d.

Proof: Clear from the previous results in this Section. ©

§6. The Main Fibration

§6.1. In this Section, we study the “the main fibration” defined in §5. We construct
various maps from Hurwitz-type schemes into G, and use these to prove some facts about
the Picard group of the Hurwitz scheme and of G. (Here d is fixed, and so we write G for
Gd.)

§6A. The Excess Divisors in the Main Fibration

§6.2. We return to working over the ring R of §1. We fix b,d, and g, and assume
further that g ≥ 5, and that d > 2g + 4. For simplicity we shall denote HRSb,d by H and
NSb,d by H. Let us denote by H∼ the open substack of H that parametrizes admissible
coverings with the following two properties:

(1) the nodal curve upstairs has an irreducible component which is smooth
of genus g;

(2) the genus zero curve downstairs has at most two irreducible components.
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Let us note that under the natural map H → Mg (§3.27), H∼ maps into Mg. On the
other hand, if we denote NOb,d by H+

, then we have an étale covering f : H+ → H. Thus

f is a Galois covering with Galois group equal to Γ def= Sb. We denote by H+, H∼,+ the
pull-backs of H, H∼ via f . Thus we have a commutative diagram:

H+ −→ H∼,+ −→ H+⏐⏐� ⏐⏐� ⏐⏐�f

H −→ H∼ −→ H⏐⏐� ⏐⏐�
Mg −→ Mg

where all the horizontal arrows are open immersions.

§6.3. Let us note that the relative dimension of G over R is: 2((d + 1 − g) − 2) + g +
3(g − 1) = 2d + 2g − 2 − 3 = b − 3 (by the Riemann-Hurwitz formula). But this is the
dimension (over R) of H. In fact, we have the following

Proposition : There is a natural open immersion κ : H → G.

Proof: Let S be an R-scheme. Then elements of H+(S) correspond to diagrams:

C
α−→ P1

S

β ↘
⏐⏐�γ

S

where C → S is a smooth curve of genus g, and C → P1
S is a degree d and has only simple

ramification. By assigning to this element the triple {(C → S) ∈ Mg(S), α∗(OP1
S
(1)) ∈

J d(S), (γ∗(OP1
S
(1)) → β∗(α∗(OP1

S
(1)))) ∈ G(S)}, we obtain a morphism H+ → G which

is clearly invariant under the action of Γ. Hence we get a morphism κ : H → G. It is clear
from the definitions and by looking at the situation when S is the spectrum of an artinian
ring that κ is étale. It is also clear from the definitions that κ is injective on geometric
points. Thus κ must be an open immersion. ©

§6.4. The next order of business is to understand what the complement G−κ(H) looks
like. To do this, we work over an algebraically closed field k (that is an R-algebra). Let C
be a smooth, proper, connected curve over k, and let L be a line bundle of degree d on C.
Let V = Γ(C,L), P = Pk(V ∧), where “∧” for us will always mean the dual space. Thus
dimk V = d + 1 − g, dimk P = d − g, and P may be thought of as the space of effective
divisors that give rise to L. A map α : C → P1

k (considered up to automorphisms of P1
k)

such that α∗(OP1
S
(1)) = L may be thought of as a line L in P such that:
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(1) There doesn’t exist any point p ∈ C(k) that appears in every divisor in
L.

On the other hand, what does it mean to say that α has at most simple ramification? It
means that every divisor in L that is not made up of d distinct points has d − 1 distinct
points, so only one point has coefficient not equal to 1, and that coefficient is 2. In other
words, we must require that:

(2) L doesn’t include a divisor that contains 3p for some p ∈ C(k);

(3) L doesn’t include a divisor that contains 2p + 2q for some p, q ∈ C(k).

Now let G = the Grassmannian of lines in P . Then dimk G = 2(d−g−1). Let δG denote
the ample generator of the Picard group of G. If we think of G as parametrizing rank 2
quotients V ∧ → Q, then δG corresponds to ∧2Q. Let us consider the diagram:

Δ ⊆ C × C

π1 ↙ ↘ π2

C C

(Diagram 6.1)

Let i be such that d − i > 2g − 2. We consider the line bundles M(i) = (π∗
1L)(−iΔ).

Let E i = π2,∗(M(i)); it has rank d − g + 1 − i. Let us denote by G(a vector bundle) the
Grassmannian of 2-dimensional quotients of the dual of the vector bundle. Now clearly we
have a natural locally split injection E1 → E0 which gives rise to a morphism ρ3 : G(E1) →
G(E0). Now E0 is simply the pull-back to C of the k-vector space V , so G(E0) = C × G.
If we compose ρ3 with the projection to G, we obtain a morphism σ3 : G(E1) → G which
is clearly generically injective and whose image consists precisely of the lines L that do no
satisfy (1). Since dimk G(E1) = dimk (G) − 1, this image is some irreducible effective
divisor D3, whose degree we will compute in §6B.

We also have a natural locally split injection E3 → E0 which gives rise to a morphism
P(E3,∧) → P(E0,∧) = C × P . If we then compose with the projection to P , we get a
morphism ρ1 : P(E3,∧) → P which is clearly generically injective and whose image consists
exactly of the bad divisors that appear in (2). The image in P is an irreducible variety
V1 of codimension 2. Let us now consider the incidence variety I ⊆ P × G of points
(p,L) with p ∈ P (k), L ∈ G(k) such that the point p lies on the line L. Then it is well-
known that I is a P1-bundle over G and a P(d−g−1)-bundle over P . Denote by IV1 the
pull-back of I (regarded as an object over P ) via V1 → P . Let σ1 : IV1 → G denote the
composition of the natural inclusions IV1 ⊆ I ⊆ P ×G with the projection to G. It is clear
(by elementary algebraic geometry) that σ1 is generically injective. On the other hand,
dimk IV1 = dimk (G) − 1, so the image of IV1 in G is some irreducible divisor D1 whose
points are exactly the bad lines that appear in condition (2). We shall compute the degree
of D1 in §6B.
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IV1 ⊆ I ⊆ P × G⏐⏐� ⏐⏐� ↙ ↘

V1 ⊆ P G

Now let us consider the following diagram:

Δ12,Δ13 ⊆ C × C × C

↙ π12

⏐⏐�π23 π13 ↘

C × C C × C C × C

(Diagram 6.2)

where the πij ’s are the respective projections and Δij = π−1
ij (Δ). Let us suppose that

i, j are such that d − i − j > 2g − 2. Let F (i,j) = (π∗
1L)(−iΔ12 − jΔ13). Let K(i,j) =

π23,∗F (i,j). Then K(i,j) is a vector bundle on C × C of rank d + 1 − g − i − j. Note that
we have a natural locally split injection K(2,2) → K(0,0) which gives rise to a morphism
P(K(2,2),∧) → P(K(0,0),∧) = C × C × P . Composing with the projection P , we get a
morphism P(K(2,2),∧) → P which is clearly generically injective after taking the quotient
by the action of Z/2Z permuting the two factors of C, and whose image consists exactly of
the bad divisors that appear in (3). The image is an irreducible variety V2 of codimension
2 in P . Forming IV2 and σ2 : IV2 → G as before, we see that σ2 is generically injective,
and that its image in G is some irreducible divisor D2 whose points are exactly the bad
lines that appear in condition (3). We shall compute the degree of D2 in §6B.

In particular, since G 	= D1

⋃
D2

⋃
D3, we see that we can always construct a map

α : C → P1 with at most simple ramification. Thus ψ◦κ is surjective. Note that instead of
working over k, then, we could have worked over J d. In summary, we have the following:

Proposition : The complement of κ(H) in G consists of three relative divisors D1,
D2, and D3 over J d, which are also geometrically irreducible over J d. They correspond,
respectively, to the linear pencils that fail to meet one of the conditions (2),(3), or (1)
listed at the beginning of this §.

§6.5. We now wish to relate these divisors of G to the divisors of H constructed in §4.
To do this, we shall need to construct some sort of map from H (or at least part of it) into
G. This is a somewhat delicate task, which we now undertake.

We shall call divisors at infinity of H∼,+ or H+
that lie over divisors of species X in

H∼ or H “divisors of species X”, as well. We propose to extend the map μ′ : H+ → H κ→G
to a map μ : H∼,+ → G. For any two distinct integers i and j between 1 and b, let us
denote by Uij the open substack of H∼,+ parametrizing admissible covers for which the
marking sections numbered i and j of the curve downstairs lie in the irreducible component
of the curve downstairs which is the image of the curve of genus g upstairs. Then it is
easy to see that, as i, j ranges over all admissible values, the union of the Uij is all of
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H∼,+, while the intersection of the Uij is H+. Thus, to define our extension μ, it suffices
to define, on each Uij , a morphism Uij → G that restricts to μ′ on H+. Let f : C → P
denote the universal admissible covering over H∼,+. Let σ1, . . . , σb : H∼,+ → P denote the
marking sections. Let Ei denote the schematic inverse image via f of σi. Let C′ → H∼,+

denote the smooth curve of genus g obtained by blowing down C as in the diagram of §3.27;
thus we have a blow-down map π : C → C′. Let E′

i denote the push-forward of the divisor
Ei via π. Since C′ is a regular scheme, E′

i defines a line bundle Li on C′, along with a
global section si of Li corresponding to E′

i. Now Li defines a morphism νi : H∼,+ → J d

(the universal Jacobian). Since it is clear that νi and νj coincide when restricted to H+,
it follows (since H∼,+ is separated and integral) that νi = νj . Now it follows from the
definition of Uij that over Uij , the restrictions of E′

i and E′
j to any geometric fibre of

C′ → H∼,+ are distinct divisors. Thus, over Uij , the pair E′
i and E′

j define a pencil, that
is, a morphism μij : Uij → G whose composite with the projection G → J d is νi = νj .
Clearly this morphism restricts to μ′ on H+. Thus, gluing together the μij , we obtain our
μ. The behavior of μ on divisors at infinity is given by the following

Proposition : Suppose that d > 2g + 4. Then μ maps divisors of Species 1 (resp.
2, 3B∗) into D1 (resp. D2, D3); moreover, the restriction of μ to the excess divisors is a
quasi-finite morphism. On the other hand, μ maps the nonexcess divisors to subsets of
codimension at least two that lie outside the image of κ. In particular, the inverse image
divisor via μ of D1 (resp. D2, D3) is a positive linear combination of all the divisors of
H∼,+ of Species 1 (resp. 2, 3B∗). Finally, the image via μ of any excess divisor is dense
in the restriction of the corresponding Di to any geometric fibre of G → Mg.

Proof: First, we note that it follows immediately from the definition of μ and the explicit
descriptions of the excess divisors given in §4 that μ maps a divisor of Species 1 (resp. 2,
3B∗) into D1 (resp. D2, D3); the assertion on quasi-finiteness is also clear from the explicit
descriptions in §4.

Now let us prove the final statement. We fix a geometric point c : Spec(k) → Mg,
where k is an algebraically closed field (of characteristic greater than b). Then it suffices
to show that the generic point of Di|c (for i = 1, 2, 3) corresponds to a morphism C → P1

which appears in an admissible covering of Species 1, 2, or 3B∗. Let us first note that the
three irreducible divisors Di|c in G (i = 1, 2, 3) are distinct: there are many ways to see
this; one way is simply to note that if any two were equal, then their degrees, as computed
in Theorem 21 of §6B would coincide; but an elementary calculation reveals that this is
absurd. We now proceed case by case.

For i = 1, a simple combinatorial check reveals that it suffices to show that the generic
pencil in D1|c does not contain two divisors each of which has a point of multiplicity three.
But in the notation of §6.4, this amounts to checking that the set of lines in P that pass
through two points of V1 has codimension at least two in G, but this is clear.

For i = 2, there are two points to check: first, that the generic pencil does not contain
two divisors each of which has two points of multiplicity two; but this follows by the same
argument as in the previous paragraph. Second, we must check that the generic pencil
does not contain a divisor which has three points of multiplicity two; but the subvariety
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V3 ⊆ P consisting of divisors with three points of multiplicity two has codimension three
in P (since we assume that d > 2g + 4). Thus, the subvariety of G consisting of lines in P
that pass through V3 has codimension two, as desired.

For i = 3, here we need to show that the generic pencil does not contain two base
points. But one sees immediately that the subvariety of G corresponding to pencils with
two base points has dimension 2(d − 3) + 2 = 2d − 4, i.e., has codimension two in G, as
desired.

We now turn to considering the nonexcess divisors. Let us suppose that x : Spec(k) →
H∼,+ is a geometric point that lands in a nonexcess divisor. One piece of information of
an admissible covering that is clearly preserved by μ is the unique nonconstant morphism,
which we shall henceforth refer as the central morphism of the admissible covering, from
the curve of genus g upstairs to a copy of P1 downstairs. Thus, let us suppose that μ(x)
lands inside the image of κ. Then the central morphism of x must be ramified over b
distinct points downstairs; but since the curve downstairs in the admissible covering x
is stable, this could only happen if the curve downstairs in x is, in fact, smooth, which
contradicts the assumption that x lies in a nonexcess divisor. Thus, μ(x) must land inside
one of the Di. Now let us suppose that μ(x) lands in a sufficiently generic point of Di.
Then by our proof of the final statement of the Proposition, it follows that the central
morphism of x is ramified over exactly b − 1 distinct points downstairs; thus, since the
curve downstairs in the admissible covering x is stable, it follows by the same reasoning as
before, that the curve downstairs in x must be of type (b − 2, 2). On the other hand, we
gave explicit descriptions in §4 of all the divisors of type (b − 2, 2); going down the list,
one sees that the only possiblity now for the nonexcess divisor in which x sits is Species
3B with g1 = g, g2 = 0. But if d2 > 1, then the central morphism of x must have at least
two base points, which contradicts what we just saw in the previous paragraph. ©

§6.6. At this point, we need to employ a result which will not be proven until the end
of §7. We state it here for ease of reference:

Theorem : Under the assumption that d > 2g +4, the line bundles defined by D1, D2,
and D3 are linearly independent in the Picard group of G.

§6.7. Now by elementary algebraic geometry, we have an exact sequence:

ZD1 ⊕ ZD2 ⊕ ZD3 −→ Pic G −→ Pic H −→ 0

If we tensor with Q, and use the fact (§5) that PicQ G = Q3, then we obtain the following
(again under the assumption that d > 2g + 4)

Corollary : D1, D2, and D3 form a basis of PicQ G.

Corollary : Pic (H) is a finite group. The homomorphism Σ of §4.8, is a surjection
when tensored with Q.
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Remark : Suppose we knew a priori or through some other technique that Pic (H) is
finite. Then what we have done here would prove that PicQ G has dimension 3. This, in
turn, would allow us to rederive in a more algebraic way many of the cohomological results
of Harer (up to torsion) which were recalled in §5.3. Given all the explicit calculations
done in the paper, it does not seem unreasonable to expect that one could, by closer
examination, prove that Pic (H) is finite in an a priori fashion. At the present time,
however, the author has not succeeded in doing this.

§6.8. Remark : It is now of interest to compute the coefficient matrix relating the
basis {D1,D2,D3} and the basis {λ,Θ, γ}. We shall do this in the next Section.

§6B. Intersection Theory Calculations

§6.9. Returning to the situation over an algebraically closed field k as in the beginning
of §6.4, the purpose of this Subsection is to compute the “degree” of the divisors D1, D2,
and D3 in G, where by “degree”, we really mean the number N such that a divisor is
linearly equivalent to δ⊗N

G . We begin by reviewing some basic facts about the geometry of
Grassmannians.

§6.10. Lemma : Let X ⊆ P be an irreducible variety of codimension 2. Then if
we construct IX and the associated generically injective morphism IX → G as in §6.4, the
degree of the image of this morphism in G is equal to the degree of X in P .

Proof: Let e = the degree of X in P . Then one knows (e.g. from [14]) that if one selects
a linear subspace Q ⊆ P of dimension 2 and a point q ∈ Q, the subvariety of G formed of
lines in Q that pass through q gives rise to a cycle which is dual to δG. Thus it suffices
to intersect X with a generic linear subspace Q ⊆ P of dimension 2 such that X

⋂
Q has

e points {x1, . . . , xe}, and to choose a generic q ∈ Q that doesn’t sit on any line passing
through two of the xi’s. Then clearly there are exactly e lines in Q that pass through q
and intersect X, and moreover, the intersection between the image of IX in G and the
cycle associated to {Q, q} is clearly transverse. Hence the Lemma. ©

§6.11. Let S be a smooth, proper, connected curve over k; let E be a vector bundle
of rank r + 1 on S. We use the Chow rings Ai(−). Write ε = c1(E) ∈ A1(S). Let
P1 = P(E), L1 = OP1(1). Then we have an exact sequence 0 → F → EP1 → L1 →
0, where the subscript denotes pull-back and F is defined by this exact sequence. Let
P2 = P(F), L2 = OP2(1). On the other hand, let G′ = G(E), and let Q be the universal
quotient of E on G′. Let P3 = P(Q), L3 = OP3(1). Then clearly P2

∼= P3, with L1 and
L3 corresponding under this isomorphism. We thus have a diagram:
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P2
∼= P3⏐⏐� ⏐⏐�

P1 G′

↘
⏐⏐�
S

Let us denote ∧2Q by δ′. Let κi = c1(Li) ∈ A1(Pi) for i = 1, 2, 3. Then we have

A∗(P1) = A∗(S)[κ1]/(κr+1
1 − κr

1ε), so κN
1 = 0 for N ≥ r + 2.

A∗(P3) = A∗(G′)[κ3]/(κ2
3 − c1(Q)κ3 + c2(Q)).

Note that if we identify A∗(P2) and A∗(P3), we have κ1 = κ3, c1(Q) = κ1 + κ2, c2(Q) =
κ1κ2. Let us denote the fundamental class of S by η, so ε = deg(E)η.

§6.12. Lemma : We have the following identities:

(1) κr+1
i = εκr

i ; hence κr+2
i = 0 for i = 1, 2.

(2) κr−1
1 κr

2 + κr
1κ

r−1
2 = εκr−1

1 κr−1
2 ;

(3) If ε = 0, then κr−2
1 κr

2 + κr
1κ

r−2
2 = −κr−1

1 κr−1
2 .

Proof: We give the proof assertion by assertion:

(1) This is elementary and well-known.

(2) ct(F) = (1 − εt)(1 − κ1t)−1. If we substitute formally by t = κ−1
2

and multiply by κr
2, the result will be zero. So we do this and multiply

further by κr−1
1 : 0 = κr

2κ
r−1
1 (1 − ε

κ2
)(1 − κ1

κ2
)−1 = κr

2κ
r−1
1 + κr−1

2 κr
1 +

κr−2
2 εκr

1 − εκr−1
2 κr−1

1 − εκr−2
2 κr

1. Rearranging terms gives the result.

(3) Same technique as in (2), but with ε = 0, and we multiply by κr−2
1

instead of κr−1
1 : 0 = κr

2κ
r−2
1 (1 − κ1

κ2
)−1 = κr

2κ
r−2
1 + κr−1

2 κr−1
1 + κr−2

2 κr
1.

©

§6.13. Lemma : c1(δ′)2r−1 = ( 2
r+1 )

(
2r−1

r

)
deg (E).

Proof: Using the previous Lemma:
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c1(δ′)2r−1 = (κ1 + κ2)2r−1

= εκr−2
1 κr

2

(
2r − 1
r + 1

)
+ κr−1

1 κr
2

(
2r − 1

r

)

+ κr
1κ

r−1
2

(
2r − 1

r

)
+ εκr

1κ
r−2
2

(
2r − 1
r + 1

)

= εκr−1
1 κr−1

2

(
2r − 1

r

)
− εκr−1

1 κr−1
2

(
2r − 1
r + 1

)

Now the result follows from the fact that since κr
1κ

r−1
2 η is clearly the fundamental class

of P3, κr−1
1 κr−1

2 η must be the fundamental class of G′, and by the elementary calculation:(
2r−1

r

)
−

(
2r−1
r+1

)
= (2r−1)!

r!(r−2)! (
1

r−1 − 1
r+1 ) = 2 (2r−1)!

(r+1)!(r−1)! = ( 2
r+1 )

(
2r−1

r

)
. ©

§6.14. Lemma : If ε = 0, then c1(δ′)2(r−1) = 1
r−1

(
2r−2

r

)
.

Proof: Using §6.12:

c1(δ′)2(r−1) = (κ1 + κ2)2r−2

= κr−2
1 κr

2

(
2r − 2

r

)
+ κr−1

1 κr−1
2

(
2r − 2
r − 1

)
+ κr

1κ
r−2
2

(
2r − 2

r

)

= κr−1
1 κr−1

2

{(
2r − 2
r − 1

)
−

(
2r − 2

r

)}

But
(
2r−2
r−1

)
−

(
2r−2

r

)
= (2r−2)!

(r−1)!(r−2)! (
1

r−1 − 1
r ) = (2r−2)!

r!(r−1)! = 1
r−1

(
2r−2

r

)
. ©

§6.15. Proposition : [D3] = d δG, where the brackets denote the linear equivalence
class.

Proof: In the calculations of §6.11 ∼ 14, set G′ = G(E1,∧). Recall our map σ3 : G′ → G.
Clearly σ∗

3(δG) = δ′ (i.e., the analogous bundle for G′ to δG on G). Suppose [D3] = N δG.
Since here r + 1 = d − g, we see from §6.14, that c1(δ′)2r−1 = N(c1(δG))2r = N(1

r )
(

2r
r+1

)
.

On the other hand, by §6.13, c1(δ′)2r−1 = ( 2
r+1 )

(
2r−1

r

)
deg (E1,∧). Thus N = −deg (E1).

The result thus is a consequence of the following:

§6.16. Lemma : If d − i > 2g − 2, then deg (E i) = −di − (g − 1)i(i − 1).

Proof: Referring to Diagram 6.1 of §6.4, we see that we have exact sequences:

0 −→ (π∗
1L)(−(i + 1)Δ) −→ (π∗

1L)(−iΔ) −→ (ω⊗i ⊗ L)Δ −→ 0

Pushing forward by π2, we get:
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0 −→ E i+1 −→ E i −→ ω⊗i ⊗ L −→ 0

Hence we obtain deg (E i+1) = deg (E i) − d − 2i(g − 1). Since deg (E0) = 0, the result
follows. ©

§6.17. Proposition : [D1] = {3d + 6(g − 1)}δG = 3(b − d)δG.

Proof: By §6.10, it suffices to compute the degree of V1 in P (notation as in the relevant
part of §6.4). Since ρ∗1(OP (1)) = OP(E3,∧)(1). Thus if α = c1(OP (1)), α′ = c1(OP(E3,∧)(1)),
and V1 is of degree N , then (α′)d−g−2 = Nαd−g. On the other hand, from basic facts about
projective bundles, we know that (α′)d−g−2 = deg (E3,∧) = −deg (E3). Now apply §6.16.
©

§6.18. Lemma : Assuming, as usual, that d > 2g + 2, we have the following Chern
classes on C × C:

c1(K(2,2)) = −(b − 4)(η1 + η2) + 4δ

c2(K(2,2)) = (b − 4)(b − 6) − 24g,

where on C ×C, ηi is the pull-back of the fundamental class of the ith factor, for i = 1, 2,
and δ = c1(Δ) − η1 − η2, where Δ is the diagonal.

Proof: First of all, K(0,2) = π∗
2E2. Thus c(K(0,2)) = 1 − {2d + 2(g − 1)}η2. On the other

hand, we have exact sequences on C × C × C:

0 −→ F (2,2) −→ F (1,2) −→ π∗
12{(ω)Δ} ⊗ π∗

13M(2) −→ 0

0 −→ F (1,2) −→ F (0,2) −→ π∗
12(OΔ) ⊗ π∗

13M(2) −→ 0

Applying π23,∗, we obtain exact sequences on C × C:

0 −→ K(2,2) −→ K(1,2) −→ π∗
1(ω) ⊗M(2) −→ 0

0 −→ K(1,2) −→ K(0,2) −→ π∗
1(OC) ⊗M(2) −→ 0

Now c(M(2)) = 1+(d−2)η1−2η2−2δ, where δ2 = −2g, δ η1 = δ η2 = 0. Thus we obtain:

c(K(1,2)) = c(K(2,2)){1 + (d + 2g − 4)η1 − 2η2 − 2δ}

c(K(0,2)) = c(K(1,2)){1 + (d − 2)η1 − 2η2 − 2δ}
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Thus we have:

c(K(2,2)) = {1 − bη2}{1 + (d − 2)η1 − 2η2 − 2δ}−1{1 + (b − d − 2)η1 − 2η2 − 2δ}−1

= {1 − bη2}{1 − (d − 2)η2 + 2η2 + 2δ − 4(d − 2)η1η2 + 4δ2}
{1 − (b − d − 2)η1 + 2η2 + 2δ − 4(b − d − 2)η1η2 + 4δ2}

= {1 − bη2}{1 − (b − 4)η1 + 4η2 + 4δ − 6(b − 4)η1η2 + 12δ2}
= {1 − (b − 4)(η1 + η2) + 4δ + (b − 4)(b − 6)η1η2 + 12δ2}

©

§6.19. Let S be a proper, smooth, connected surface over k. Let E be a vector bundle
on S of rank r + 1. Let α = c1(OP(E∧)(1)). Then we have the following:

Lemma : αr+2 = c2
1(E) − c2(E).

Proof: We have αr+1 = −c1(E)αr − c2(E)αr−1. Then αr+2 = −c1(E)αr+1 − c2(E)αr =
{c2

1(E) − c2(E)}αr, as desired. ©

§6.20. Proposition : [D2] = 1
2{b(b − 10) + 8d}δG.

Proof: As in §6.17, we apply §6.10, and we see that if we take S = C ×C and E = K(2,2),
so that r + 1 = d − g − 3, we have 1

2αr+2 = [D2]. Thus by §6.19, §6.18, we have 2[D2] =
2(b − 4)2 − (b − 4)(b − 6) + (−32g) + 24g = (b − 4)(b − 2) − 8g = b(b − 10) + 8d. ©

§6.21. To summarize, we have the following

Theorem : The degrees of the excess divisors in G are as follows:

[D1] = 3(b − d) δG

[D2] = 1
2{b(b − 10) + 8d} δG

[D3] = d δG

§6C. Ramification Indices

§6.22. Let us consider the morphism μ : H∼,+ → G constructed in §6.5. Now H+ ⊆
H∼,+ as an open subscheme, and the complement of this open subscheme consists of certain
divisors at infinity. In this Subsection, we wish to compute the indices of ramification of μ
at the excess divisors. These computations will be important for §7. Note that we continue
to assume here that g ≥ 5 and d > 2g + 4.
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Note that all this is taking place over Z[ 1
N ], where N = b!. On the other hand, G

is defined over Z, which prompts the question: What is the nature of the ramification of
μ′ : H+ → H κ−→G, over the primes p dividing N? In fact, we shall see that there is no
ramification at the odd primes.

§6.23. We begin with the ramification of μ at the excess divisor of Species 2. Note that
in this case, the different (though not the discriminant) is étale over the base; thus, the
process of “ordering the sections” gives rise to a covering of G which is étale over D2. Let
f : C → P denote the universal admissible covering over H∼,+. Let σ1, . . . , σb : H∼,+ → P
be the b marking sections; suppose that σi lifts to ρi : H∼,+ → C, at which f is simply
ramified. Let ℘ be a prime divisor of height one of H∼,+ which “is” a divisor at infinity
of Species 2. Let U be an open substack of H∼,+ that contains ℘ and is so small that the
normal sheaves of the σb (which are line bundles on H∼,+) are trivial when restricted to U .
Choose trivializations τ1, . . . , τb for these normal sheaves over U . Let U ′ → U be the étale
covering that parametrizes trivializations of the normal sheaves of the ρi whose squares are
the trivializations τi. Let ℘′ be a prime of U ′ that lies over ℘. Note that with this extra
rigidification, a generic admissible covering of Species 2 loses all its automorphisms, so that
U ′ is a scheme in a neighborhood of ℘′. Let A be the completion of U ′ at ℘′. It is thus clear
from the general theory of algebraic stacks and their associated coarse moduli spaces (see,
e.g., [11], p. 23) that to determine the desired index of ramification, we must simply do the
following: consider the group Γ = Gal(U ′/U) ∼= (Z/2Z)b that acts on the added structure
of choosing “specific square roots of uniformizers over points of simple ramification”. The
inertia subgroup I at ℘′ is isomorphic to (Z/2Z) and sits inside the (Z/2Z)2 ⊆ Γ that
corresponds to the two points of simple ramification on the P1’s upstairs. Then from the
equivalent definition of A as the solution to a certain infinitesimal moduli problem, we see
that I acts nontrivially on A. Let B = AI , the ring of invariants. Then B is also a discrete
valuation ring, and the desired index of ramification is the the same as that of A over B.
Looking at the explicit description given in [19],§4, p. 62, however, we see that I takes
some uniformizer of A to minus itself; hence the index of ramification must be 2.

Proposition : μ has ramification index 2 at excess divisors of Species 2.

§6.24. Let us now note that H∼,+ is already a scheme at the generic points of divisors
of Species 1 and 3B∗; indeed, for those Species, once we order the points, there are no
automorphisms.

Now since generically, in the case of either of these excess divisors, at most two of the
b sections come together as one degenerates from an ordinary Hurwitz covering, it is clear
that the ramification index is either 1 or 2. Thus, to show that in both of these cases the
ramification index is, in fact, 2, it suffices to construct one example where S = Spec C[[x]],
C → S a proper, smooth curve of genus g, with a diagram:

Cη
fη−→ P1

η

↘
⏐⏐�
η ⊆ S
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such that fη is an ordinary Hurwitz covering which generates to a covering of Species 1 or
3B∗ and such that if T = S ×G H∼,+, then T → S is ramified.

§6.25. We construct such examples using the theory of vanishing cycles reviewed in the
Appendix to §4. Let S = Spec R, with R = C[[x]], Ri = C[[xi]] ⊆ R for i a natural number,
Si = Spec Ri. Choose distinct nonzero complex numbers λ2, . . . , λb−1 and denote the
corresponding sections of P1 by σ2, . . . , σb−1. We will later subject the complex numbers
λi to a further condition which the generic choice of λi’s will fulfill (assuming d to be large).
By abuse of notation, we also denote by σ2, . . . , σb−1 the sections pulled back to S1, S2,
and S3. Write C[[T ]] for the completed local ring at the point 0 of P1

C. Let (for i = 0, 1) σi

be the section of P1
S3

which is the graph of the map S3 → P1
C given by T �→ (−1)iX3. Let

τ be the unique nontrivial element of the Galois group of S3 over S6. Then τ(σi) = σ1−i

for i = 0, 1, which τ(σi) = σi for i ≥ 2. Denote by ηi the generic point of Si. Now if
Gi = Gal (k(η)/k(ηi)), where k(η) = k(ηi) for all i, then we have G1 ⊆ G3 ⊆ G6, and
G1 ⊆ G2 ⊆ G6. Choosing a root of unity, we get isomorphisms Gi

∼= Z∧ for all i. Let ζi

be the canonical generator of Gi under this isomorphism. Then ζ2
6 = ζ3, ζ3

6 = ζ2, ζ6
6 = ζ1.

Moreover ζ6 acts like τ on the σi’s.

“Drawing” paths around the σi’s, we see that the fundamental group Γ of P1
η −

{σ0, σ1, . . . , σb−1} = Uη may be described as the (profinite completion of the) free group
on generators g0, g1, . . . , gb−1 modulo the sole relation g0g1g2 . . . gb−1 = 1. A simple calcu-
lation reveals the action of ζ6 on Γ is given by g0 �→ g0, g1 �→ g−1

1 g0g1, gi �→ gi for i ≥ 2.
A connected étale covering of Uη of degree d is defined by a transitive action of Γ on the
set {1, . . . , d} of d elements. This covering is rational over ηi if and only if the action of
Γ obtained by composing the original action with the automorphism of Γ defined by ζi is
the same as the original action. Finally, note that the subscheme σ0

⋃
σ1 of P1

S3
descends

to a closed, irreducible subscheme of P1
S6

, which, as an S6-scheme, is isomorphic to S3,
hence ramified over S6.

The Case of Species 1 : Choose a transitive sequence of b transpositions in Sd whose
product is 1 to assign consecutively to g0, . . . , gb−1, such that the first two transpositions
are (12). We assume that the λi’s are chosen such that the curve of genus g in the special
fibre over S in the covering defined by this sequence of transpositions has no nontrivial
automorphisms. (This will always be possible for d > 2g + 4 by Proposition 5.) Clearly ζ6

acts trivially on this homomorphism from Γ to Sd, so we get the example desired over S6.

The Case of Species 3B∗ : Choose a transitive sequence of transpositions as above that
gives rise this time to Species 3B∗, with the first transposition being (12) and the second
(23). Again we assume the λi’s and sequence of transpositions chosen so that the curve of
genus g in the special fibre over S has no nontrivial automorphisms. A simple calculation
reveals that ζ2 acts trivially on the induced homomorphism from Γ to Sd, so we obtain
the desired example over S2.

We have thus proven the following

Proposition : μ has ramification index 2 at divisors of Species 1 and 3B∗.
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§6.26. Corollary : Assuming still that g ≥ 5 and d > 2g +4, HROb,d and HUOb,d

are geometrically connected.

Proof: We treat the rigidified case; the unrigidified case is analogous. If not, there
would be a nontrivial maximal unramified extension between HROb,d and HRSb,d, but
our explicit computation of the ramification shows that this is impossible. The result thus
follows from the corresponding result for HRSb,d (§2). ©
Remark : The referee has informed me that this last result was obtained by Clebsch
directly via purely combinatorial methods similar to those used in §2.

§6.27. In closing, we shall prove the following:

Proposition : μ is unramified over all odd primes p of Z.

Proof: As G is regular, it suffices to show, by the purity theorem, that there exists a
geometric point of H of any odd characteristic such that the covering of this geometric
point induced by H+ → H is étale. (Here we note that H can be defined over Z as the
complement in G of the three divisors D1, D2, and D3, which are clearly defined and
proper over Z.) Translated, this means that given an algebraically closed field k of odd
characteristic p, we must find a smooth, proper, connected curve C over k and a morphism
f : C → P1

k of degree d such that the discriminant of f is étale over k. But this clearly
follows from the analysis of §4, which works so long as k has odd characteristic. ©
Remark : It was the goal of this Subsection to determine the indices of ramification
of μ at all the primes of height one of G (over Z). We have thus completed this task at
all primes except 2, where there is wild ramification, thus making our goal at this prime
beyond the scope of this paper.

§7. The Coefficient Matrix

§7.1. In this Section we shall complete the proof of Theorem 8 of §4 by showing that
the excess divisors in G are linearly independent in Pic(G), and, in the process, we shall
explicitly compute the coefficients of λ, Θ, and γ in terms of D1, D2, and D3. This
also gives us explicitly the “main filtration” (§5.10) in terms of the Di’s. We can thus
check the coefficients of λ and Θ by making sure that they are in the kernel of the map
F 3 → F 3/F 2 ∼= Q δG, which was computed explicitly in §6B. As usual, it suffices to work
over the complex field C, so we will do that in this Section.

§7.2. Let us note, first of all, that there exists a proper, smooth, connected curve S

(over C) with the following property: there exist enough morphisms φi : S → H+
that

avoid nonexcess divisors so that if we write ψi : S → G for the morphism induced by
composing φi with κ, then the matrix {deg(ψ∗

i Fj)}, where j = 1, 2, 3; F1 = λ; F2 = Θ;
F3 = γ, is of rank three. Indeed, we can prove the existence of such an S as follows. First,
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take any nonconstant morphism f ′ : S′ → Mg, where S′ is a proper, smooth, connect curve
(over C). (To see the existence of such an f ′, consider the Satake embedding Mg ↪→ PN

of the coarse moduli space Mg; since the divisors at infinity of Mg map to subsets of
codimension ≥ 2 in the closure Mg of Mg in PN , one can construct a proper curve inside
Mg by cutting by hyperplane sections.) Let G′ = G ×Mg

S′. Now it follows from our
explicit analysis of PicQ(G) that the natural morphism PicQ(G) → PicQ(G′) is injective.
Moreover, it follows from Proposition 5 of §4 that the inverse images via G′ → G of
the images via μ of the nonexcess divisors are of codimension at least two in G′. Thus,
it suffices to prove the original statement for G′ instead of G; but since G′ is clearly a
projective scheme, the existence of S and the ψi follows by reducing to the case when G′

is a smooth, proper surface (by cutting with hyperplane sections) and then taking a basis
of the Q-Néron-Severi group of the surface which consists of smooth very ample divisors.
The only remaining technical point is that it may at first seem that we need to use different
curves Si with ψi : Si → G′ (or G, or H+

), but in fact, it is elementary that given any
finite number of curves Si, there exists a curve S and finite morphisms αi : S → Si. This
completes the proof.

Let us fix one such morphism φ : S → H+
. Now let us note that if we can prove

a linear relation between the degrees of the pull-backs via ψ of certain line bundles and
divisors from G for all φ as above, then the relation must, in fact, hold on G.

Now φ corresponds to some admissible covering f∼ : X∼ → P∼ over S. Let us denote
by σ0, . . . , σb−1 the sections S → P∼ that make up the discriminant of f∼. The stable
curve associated to p∼ : X∼ → S, which we shall call p : X → S (obtained as in §3.27),
is, in fact, smooth, and the only kinds of degeneracies that occur are those of Species 1,
2, or 3B∗. Let us denote by U ⊆ X the complement of the finite set of points that are
the points of degenerate ramification in the fibres of Species 3B∗ (so there is exactly one
such point in each fibre of Species 3B∗). Then one sees easily that f∼ contracts to a map
f : U → P , where P is a P1-bundle over S. Thus we have a diagram:

X ⊇ U
f−→ P⏐⏐�p ↙ π

S

By abuse of notation, we also denote by σi the push-forwards of the original σi to sections
of π. We denote by τi the unique section of X → S that lies over σi and passes through
the points of ramification. We denote by OP (1) some line bundle on P (which we fix for
the entire discussion, but the choice of which is noncanonical) whose negative square is the
relative canonical bundle for P → S. (Note that we may need to replace S by some finite
étale cover of S in order for OP (1) to exist.) Observe that the square of the first Chern
class of OP (1) is zero. Let L be the unique line bundle on X such that, restricted to U ,
it is equal to f∗ OP (1). By abuse of notation, we will similarly write f∗ F for other line
bundles F on P to denote the unique extension to X of the actual bundle f∗ F on U . Also,
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let R =
∑b−1

i=0 τi, in the sense of divisors. Then we see that ωX = (p∗ ωS) ⊗ (f∗ ωP/S)(R)
and ωX/S = f∗ωP/S(R), where the various ω’s denote the respective canonical bundles.

Let hi denote the height of the section σi of π relative to OP (1). Thus, on P , we
have σi · σj = hi + hj . Let l =

∑
hi. Let us choose two distinct, constant, but sufficiently

generic divisors F1 and F2 on P which are of the form “the sum of a divisor which is a
(sufficiently generic) section of P → S and various (sufficiently generic) vertical divisors”
and which is such that OP (1) ∼= OP (F1) ∼= OP (F2). Let Gi be the divisor f−1 Fi on X,
for i = 1, 2, so that L ∼= OX(G1) ∼= OX(G2).

§7.3. We wish to compute the following intersection numbers of divisors on X:

(A) G2
1 = G2

2 = G1 · G2

(B) τi · G1 = τi · G2

(C) τi · τj (for i 	= j)

(D) τ2
i

It is clear that it suffices to work locally over S, i.e., using local intersection theory. Thus
we let C = Spec A with A the completion of the local ring at some closed point x of S and
obtain a diagram

X ⊇ U −→ P ∼= P1
C⏐⏐�p ↙ π

C

which is the result of applying the base change C → S to the diagram in the previous §.
By abuse of notation, we continue to use the symbols σi, τi for the base-changed sections.
Also note that it suffices to compute the result in the universal situation as a function of
the σi · σj ’s and that formula will hold in general.

Finally, note that (in the global situation) if q = the genus of S, then by the adjunction
formula, we have:

2(q − 1) = τ2
i + τi · ωX

= τ2
i + τ2

i + τi · (R − τi) + τi · p∗ωS + τi · f∗ωP/S

= 2τ2
i + τi · (R − τi) + 2(q − 1) − 2τi · G1

Thus, τ2
i = − 1

2τi · (R − τi) + τi · G1. Hence it suffices to compute (A), (B), and (C)
locally.

§7.4. We begin with the case of a closed point x ∈ S where the covering does not
degenerate. Then it is clear that:
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(A) G1 · G2 = 0

(B) τi ·G1 = 0 for most points x, except for a finite number of special points;
the sum of the local intersections over these points is hi.

(C) τi · τj = 0 for i 	= j.

§7.5. Equally simple is the case of Species 2. Here we see that:

(A) G1 · G2 = 0

(B) τi · G1 = 0 (since G1 is sufficiently generic)

(C) τi · τj = 0 for i 	= j.

§7.6. We now consider the case of Species 1. By reduction to the univeral case, we may
assume that σi ·σj (where i 	= j) is 0 except when {i, j} = {0, 1} in which case σ0 ·σ1 = 3.
Now we have the following formulas for divisors:

f−1 (σ0) = 2τ0 + E0

f−1 (σ1) = 2τ1 + E1

where E0, E1 are effective horizontal divisors of X of degree d − 2 over C. Thus we get:
3 = σ0 · σ1 = f∗ (τ0) · σ1 = τ0 · f−1 (σ1) = 2τ0 · τ1 + τ0 · E1. But it is clear that τ0 · τ1

and τ0 · E1 are both positive integers. Thus τ0 · τ1 = 1. Returning to the general local
case of Species 1, we see that if for some m, k, σm · σk 	= 0 while σi · σj = 0 for all other
combinations, then:

(A) G1 · G2 = 0

(B) τi · G1 = 0 (since G1 is sufficiently generic)

(C) τm · τk = 1
3σm · σk, τi · τj = 0 for all other combinations {i, j}.

§7.7. The case of Species 3B∗ is somewhat more involved. Let us first note that by
reduction to the universal case, we may assume that σ0 ·σ1 = 1, and σi · σj = 0 (for i 	= j)
for all other combinations. Then if we define X∼ to be the scheme obtained from C as a
result of two ordinary blow-ups at points taken in a certain fashion, then f will extend to
a morphism f∼ : X∼ → P∼ which is everywhere defined and is the pull-back via C → S of
the f∼ of §7.2. Let X1 be the blow-up of X at the point of degenerate simple ramification.
Denote by D the exceptional curve of this blow-up m : X1 → X . Then X∼ is the blow-up
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k : X∼ → X1 at a point of D. Let C1 be the strict transform of D in X∼, and C2 the
exceptional curve of k. Let h = m ◦ k. Then we have a diagram:

X∼
1

k←− X∼ f∼
−→ P∼

m ↘
⏐⏐�h

⏐⏐�g

X ⊇ U f−→ P⏐⏐�p

⏐⏐�π

C id−→ C

Moreover we have the sections σi of π, and their unique liftings σ∼
i to sections of π ◦ g; on

the other hand, we also have the sections τi of p lifting the σi, the sections τ
(1)
i of p ◦ m

lifting the τi, and the sections τ∼
i of p◦h again lifting the τi. Let (for i = 1, 2) G

(1)
i and G∼

i

be the respective strict transforms on X1 and X∼. Let L(1) = m∗ L, L∼ = h∗ L = k∗ L(1),
M = g∗ OP(1), M∼ = f∼,∗ M. Now OP(1)·OP(1) = 0, so M·M = 0, and M∼ ·M∼ = 0.
But clearly, M∼ = OX∼(G∼

1 ) = OX∼(G∼
2 ), so (G∼

1 )2 = (G∼
2 )2 = G∼

1 · G∼
2 = 0. On

the other hand, k∗ D = C1 + C2 and D2 = −1, C2
2 = −1, C1 · C2 = 1, so we get

−1 = C2
1 + 2C1 · C2 + C2

2 , hence C2
1 = −2. Also, it is clear that for i = 1, 2, we have

G∼
i ·C1 = 0 and G∼

i ·C2 = 1. Now L(1) = O(G(1)
i + D), so that L∼ = O(G∼

i + C1 + 2C2),
where i = 1, 2. Hence,

G1 · G2 = L · L = L∼ · L∼

= (G∼
1 + C1 + 2C2) · (G∼

2 + C1 + 2C2)

= 4 + (C1 + 2C2)2 = 4 − 2 − 4 + 4 = 2

Let us now note the following easy relations: τ∼
0 · τ∼

1 = 0, τ∼
i · C1 = 1, τ∼

i · C2 = 0,
τ∼
i · G∼

j = 0 for all i ∈ {0, 1}, j ∈ {1, 2}. Also, we see that h∗ τi = τ∼
i + C1 + C2, for

i ∈ {0, 1}. Thus,

τ0 · τ1 = h∗τ0 · h∗τ1

= (τ∼
0 + C1 + C2) · (τ∼

1 + C1 + C2)

= 2 + (C1 + C2)2 = 2 − 1 = 1

Finally, for any i ∈ {0, 1}, j ∈ {1, 2},

τi · Gj = h∗(τi) · h∗(Gj)
= (τ∼

i + C1 + C2) · (G∼
j + C1 + 2C2) = 1 + 2 − 2 = 1

Returning to the general local case of Species 3B∗, we see that if σm ·σk 	= 0 for some
m, k and σi · σj = 0 for all other combinations of i, j with i 	= j, then:
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(A) G1 · G2 = 2σm · σk

(B) τi · G1 = σm · σk for i ∈ {m, k}, 0 otherwise.

(C) τm · τk = σm · σk, τi · τj = 0 for all other combinations such that i 	= j.

§7.8. We are now ready to return to the global situation of §7.2 and compute global
intersection numbers. Let ν1 (resp. ν2, ν3) denote the number of points of S (with multi-
plicity) at which a degeneracy of Species 1 (resp. 2, 3B∗) occurs. Thus ν1+ν2+ν3 = l(b−1).
First, we see that L · L = G1 · G2 = 2ν3; hence (f∗ωP/S)2 = 8ν3. Next, we have
R · L =

∑b−1
i=0 τi · G1 = l + 2ν3; hence R · (f∗ωP/S) = −2(l + 2ν3). Finally, we have:

R2 =
b−1∑
i=0

τ2
i + 2

∑
i<j

τi · τj

=
b−1∑
i=0

τ2
i +

1
2
(
∑
i �=j

τi · τj) + (
∑
i<j

τi · τj)

=
b−1∑
i=0

{τ2
i +

1
2
τi · (R − τi)} +

∑
i<j

τi · τj

= R · G1 +
1
3
ν1 + ν3

= l +
1
3
ν1 + 3ν3

We have, after possibly enlarging S, a morphism α : S → G corresponding to the
diagram in §7.2. Let δi = deg (α∗Di). Then by §6C, we see that ν1 = 3

2δ1, ν2 = δ2,
ν3 = 1

2δ3. Thus we summarize as follows:

(1) 3δ1 + 2δ2 + δ3 = 2l(b − 1)

(2) (f∗ ωP/S)2 = 4δ3

(3) R · (f∗ ωP/S) = −2(l + δ3)

(4) R2 = l + 1
2δ1 + 3

2δ3.

§7.9. Let us compute λS = 1
12 (ωX/S)2 purely in terms of δ1, δ2, and δ3 (and not l).

We have:
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ω2
X/S = (f∗ ωP/S)2 + R2 + 2R · (f∗ ωP/S)

= −3l +
1
2
δ1 +

3
2
δ3

=
1

2(b − 1)
{−3(3δ1 + 2δ2 + δ3) + (b − 1)(δ1 + 3δ3)}

=
1

2(b − 1)
{(b − 10)δ1 − 6δ2 + 3(b − 2)δ3}

Now by the reasoning of §7.2, by choosing various φ, we obtain enough possibilities so that
any relation among line bundles on G that holds for all these possibilities must, in fact,
hold on G. Thus we obtain the following:

Proposition : λ = 1
24(b−1){(b − 10)D1 − 6D2 + 3(b − 2)D3}

§7.10. It follows from the definition and from [26], Corollary 2.7.6 of Exposé II, that
ΘS = − 1

2 (L − d
2(g−1)ωX/S)2. Let χ = 2(g − 1). Then we see that (−8χ2) ΘS = (χR −

bωX/S)2. Note that χ = b − 2d. Then

(−8χ) ΘS = (b − 2d)R2 − 2b R · (ωX/S) + (
b2

χ
)(ωX/S)2

= −(b + 2d)(l +
1
2
δ1 +

3
2
δ3) + 4b(l + δ3)

+
b2

2(b − 2d)(b − 1)
{(b − 10)δ1 − 6δ2 + 3(b − 2)δ3}

Thus,

−16χ(b − 1)ΘS = (3b − 2d)(3δ1 + 2δ2 + δ3) − (b + 2d)(b − 1)δ1 + (b − 1)(5b − 6d)δ3

+
b2

(b − 2d)
{(b − 10)δ1 − 6δ2 + 3(b − 2)δ3}

= −{b(b − 10) + 2d(b + 2)}δ1 + 2(3b − 2d)δ2 + {b(5b − 2) − 2d(3b − 2)}δ3

+
b2

(b − 2d)
{(b − 10)δ1 − 6δ2 + 3(b − 2)δ3}

Thus,

−16(b − 1)(b − 2d)2ΘS = {b2(b − 10) − b(b − 2d)(b − 10) − 2d(b − 2d)(b + 2)}δ1

+ {2(3b − 2d)(b − 2d) − 6b2}δ2

+ {b(5b − 2)(b − 2d) − 2d(3b − 2)(b − 2d) + 3b2(b − 2)}δ3

= −4d{6b − d(b + 2)}δ1 + 8d(d − 2b)δ2 + 4{2b2(b − 1)

− 2bd(2b − 1) + d2(3b − 2)}δ3
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By the same logic as above,

Proposition : Θ = 1
4(b−1)(b−2d)2

(
d{6b − d(b + 2)}D1 − 2d(d − 2b)D2 − {2b2(b − 1) −

2bd(2b − 1) + d2(3b − 2)}D3

)

§7.11. Let E = p∗L. Then E is a vector bundle of rank d + 1 − g on S. Noting by
Riemann-Roch that π∗OP (1) has degree zero, we see that it follows from the definitions
that (d + 1 − g)γS = 2N , where N = deg (E). Let κ = c1(ωX/S), μ = c1(L). By
Riemann-Roch,

N = Td(−κ) ch(μ) = (1 − κ

2
+

κ2

12
)(1 + μ +

1
2
μ2)

=
κ2

12
+

μ2

2
− κμ

2

In our language, then,

24N = 2(ωX/S)2 + 3(f∗ ωP/S)2 + 6ωX/S · (f∗ ωP/S)

= 2(ωX/S)2 + 9(f∗ ωP/S)2 + 6R · (f∗ ωP/S)

Hence,

24(b − 1)N = (b − 10)δ1 − 6δ2 + 3(b − 2)δ3 + {36δ3 − 12δ3 − 12l}(b − 1)
= (b − 10)δ1 − 6δ2 + 3{(b − 2) + 8(b − 1)}δ3 − 6(3δ1 + 2δ2 + δ3)
= (b − 28)δ1 − 18δ2 + 9(3b − 4)δ3

Thus we have the following:

Proposition : γ = 1
6(b−1)(4d−b){(b − 28)D1 − 18D2 + 9(3b − 4)D3}

§7.12. Remark : This completes our calculation. As remarked previously, we can
check our calculation by making sure that the expressions for λ and Θ go to zero, while
that for γ goes to one under the map: D1 �→ 3(b − d), D2 �→ b

2 (b − 10) + 4d, D3 �→ d.

§7.13. We are now in a position to complete the proof of Theorem 6 of §6, and hence of
its consequences, first mentioned in §4, and restated in §6.7. We wish to show that D1, D2,
and D3 are linearly independent in the Picard group of G. But from the relations obtained
already in this Section, we see that the Q-linear subspace generated by the excess divisors
already contains a basis for the whole space. The result thus follows immediately.
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§8. Arithmetic Applications

§8.1. In this Section, we make suggestions about possible applications of the material
discussed up till now to giving

(1) An alternate proof of the Shafarevich conjecture

(2) An effective version of the Mordell conjecture in the style of [30].

In particular, we expose a certain kind of argument discovered by the author that allows
one to conclude the above arithmetic results by using the geometry of the compactification
of the Hurwitz scheme. The argument to be exposed, however, has a couple of gaps that
the author has not been able to fill in. We state the facts necessary to fill in these gaps
as “Wishes,” in the hope that perhaps some reader will see how to prove them, thus
completing the proposed proofs of the above arithmetic results.

Let B = Spec OF , where OF is the ring of integers of a number field F . Let f : C → B
be a smooth curve of genus g ≥ 3. (We assume good reduction to simplify the discussion,
since this case already illustrates the essential problem involved.)

§8.2. If f is hyperelliptic (i.e., the geometric fibres of f are hyperelliptic), then we can
canonically write f as a double covering of P1

B , so that to every such f we can canonically
assign (up to automorphisms of P1

B) a certain number of points of P1
B which are distinct

from each other outside primes over 2. We can then conclude the “Shafarevich conjecture”
for such hyperelliptic curves, i.e., that only a finite number of such curves exist over B, by
applying Siegel’s theorem on integral points.

If f is not hyperelliptic, then no such canonical presentation as a double covering
exists. Generically, that is, over F , we can write f as a Hurwitz covering of P1

F , but
then the problem is that we can’t apply Siegel’s theorem unless we know that the points
of ramification remain distinct, not only generically, but at all primes outside some fixed
finite set. Thus it is natural to study in detail degenerations of Hurwitz coverings, i.e., the
compactification of the Hurwitz scheme, to see if one can get around this problem. This
was the original motivation for this paper.

§8.3. We can add some canonicality to the situation if we insist that we only consider
coverings f : CF → P1

F such that f∗ O(1) = ω⊗N
CF /F , where N is some fixed integer. If we

let σ : Mg → J Nχ be the section corresponding to ω⊗N
CF /F , and let K be such that the

following diagram is Cartesian:

K τ−→ G⏐⏐�ρ

⏐⏐�
Mg

σ−→ J Nχ
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then ideally, we would like a section ζ of ρ that avoids the Ei = τ∗ Di, for i = 1, 2, 3. This
is unrealistic, however. In fact, even constructing any section ζ at all is rather difficult.

At the other extreme, if we assume that the height (e.g.[10]) of our curve is bounded,
then everything becomes trivial. Indeed, if we fix an appropriate metric on K so as to
give it an “integral structure” over the “compact curve” Spec OF

⋃
S∞ (where S∞ = the

archimedean places), then we see that if c : B → Mg is the classifying map of our curve,
then the number of possibilities for the Grassmann bundle c∗K is bounded as soon as
degAr (c∗λ) (where “degAr ” means the degree of the arithmetic line bundle) is bounded,
by the following result of Faltings:

Lemma : The number of closed subvarieties V ⊆ PM
B (where M is any positive integer),

with π : V → B flat, of degree d (∈ N) as a subvariety over F of PM
F , of relative dimension

n over B, and of height degAr (π∗[O(1)]n+1) ≤ M ′ (for some fixed M ′ ∈ R) is finite.

Proof: (Sketch) The Lemma is obvious for hypersurfaces. But then one can easily reduce
to the case of hypersurfaces via the method of the Chow variety. ©
(Here we apply the Lemma by using the Plücker embedding for c∗K and note that

degAr c∗(ρ∗[γ]N+1) ≤ K degAr (c∗λ)

for some fixed K (independent of c) and for N = relative dimension of ρ). Similarly, since
the total number of possibilities for the entire situation is finite, we can certainly find some
finite set S of primes of B such that we can always write curves C with bounded height
as Hurwitz coverings over B − S. (In fact, the Lemma also shows that the number of
possibilities for C is, in this case, also finite!).

§8.4. The problem, then, is to find an intermediate course. First, we must bound the
number of possibilities for the Grassmann bundle c∗K without bounding degAr (c∗λ). If the
Grassmann bundle is associated to a vector bundle E which is “sufficiently indecomposable”
in the sense that it is parametrized by some sort of finite “cohomology group” on the
compactified curve Spec OF

⋃
S∞ (cf. the well-known situation for indecomposable vector

bundles of rank 2 on curves over a finite field), then the number of possibilities for c∗K will
be finite. At present, however, the author does not know how to prove this sort of result,
so we merely state it as a “wish:”

Wish 1: The number of possibilities for c∗K (as a Grassmann bundle) is finite.

Moreover, in order to be able to prove the Shafarevich conjecture as in the hyperelliptic
case, we also need the following result:

Wish 2 : Let F be a number field, with ring of integers OF . Let G → Spec OF be a
Grassmann bundle with integral structure at infinity. Let r ∈ N, d1, . . . , dr ∈ N. Fix a
finite set of closed primes S ⊆ Spec OF . Then there exists a finite set of closed primes
(S ⊆)T ⊆ Spec OF with the following property:

(∗) Let D1, . . . ,Dr ⊆ G be flat divisors over Spec OF with Di of degree di

for all i = 1, . . . , r that are geometrically integral and distinct outside
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S. Then there exists a section σ : Spec OF → G that avoids D1, . . . ,Dr

outside T .

The result is known to be true in the following cases:

(1) If G is a P1-bundle, then it follows from Siegel’s theorem on integral
points.

(2) If G is a P2-bundle, then if we assume that the Di are not only ge-
ometrically integral, but smooth, then it follows from the Shafarevich
conjecture applied to smooth plane curves.

In both these cases, however, one should note that Siegel’s theorem and the Shafarevich
conjecture are somewhat stronger than Wish 2, and so using them to prove Wish 2 is sort
of overkill. At this point, the author knows of no way to prove Wish 2 in any generality,
but if a proof could be given for Wish 1 and Wish 2, then one could prove the Shafarevich
conjecture using the technique of Hurwitz coverings.

In closing we remark that since the Shafarevich conjecture is, in fact, known [10], the
number of possibilities for f : C → B is, in fact, finite, so we can, indeed, find a fixed,
finite set of primes T which is independent of F and such that we can write any f : C → B
as a Hurwitz covering outside S. Thus, we see that something like Wish 1 and Wish 2
must be true, but to approach things in this way is to defeat the purpose of this venture!

§8.5. We now move on to motivating the possible application to an effective form of
the Mordell conjecture. In §7, we computed the coefficients of λ in terms of the Di and
found that the coefficients for D1 and D3 were positive, while that for D2 was negative.
Suppose, however, just for the moment that all three coefficients were positive. Then, since
the Di are all effective (i.e., in the sense of divisors, not in the sense of an “effective” form
of the Mordell conjecture), there would exist a constant K ∈ N such that the inequality

(∗1) Θ ≤ Kλ

would hold on G. Now suppose that our curve f : C → B is fixed and that we have a fixed
line bundle L on C of relative degree d − 1 for some large d. Then we have a diagram:

C
α−→ J d⏐⏐�f

⏐⏐�
B

c−→ Mg

where α is defined on an S-section τ : S → CS by associating to τ the line bundle L(τ)
(where τ is regarded as a relative divisor) of relative degree d on CS . Now α∗Θ is relatively
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ample on C and hence defines a height hΘ(−) on rational points. Now if we pull back the
Grassmann bundle α∗(G → J ) to a bundle over C, this Grassmann bundle, which a priori
is locally trivial only in the étale topology, will, in fact, be locally trivial for the Zariski
topology; thus, if we are given a section σ of f , and pull-back this Grassmann bundle
further via σ to a Grassmann bundle over B, this bundle over B will always have a section
over B. Thus we can pull back the relation (∗1) via α ◦ σ to obtain:

(∗2) hΘ(σ) ≤ KdegAr (c∗λ)

Moreover, this holds (with the same K) over any number field F and thus gives us a
relation of the same type (only stronger) as that conjectured by Vojta [24], Appendix, §5,
p. 176. In particular, it implies the Mordell conjecture.

§8.6. In fact, however, (∗2) is too strong and it is easy to see that it cannot hold. This
is not surprising considering that after all, we derived it using the incorrect assumption
that the coefficient of D2 for λ is positive. To form a reasonable conjectural inequality like
(∗2), one must somehow involve the discriminant of the base field. Thus, Vojta conjectures:

(∗3) hΘ(σ) ≤ K1 discF/Q + K2

where K1 and K2 are constants independent of F , and discF/Q is the “logarithmic dis-
criminant” of loc. cit..

On the other hand, althought the derivation of §8.5 is incorrect, it is very tempting,
since it “almost” works in the following metamathematical sense: only the coefficient of D2

is negative, and, moreover, since d, hence b, is taken to be very large, the absolute value of
the coefficient of D2 is much smaller than those of the other, positive coefficients. One is,
thus, tempted to conjecture that if we write Gσ for the Grassmann bundle σ∗ α∗(G → J d)
over B, and Di,σ for the various pull-backs of the Di’s to divisors of Gσ, then we have the
following:

Wish 3: For fixed F , we can choose a section τ : B → Gσ such that degAr (τ∗D2,σ) is
bounded independent of σ.

as well as:

Wish 4 : For variable F , there exist K1,K2 ∈ N such that for any σ over any F , there
exists a section τ : B → Gσ such that degAr (τ∗D2,σ) ≤ K1 discF/Q + K2 (so K1 and K2

are independent of σ and F ).

Thus, combined with the reasoning of §8.5, Wish 3 would imply the ordinary Mordell
conjecture, while Wish 4 would imply Vojta’s generalization (∗3) of that conjecture. It
seems that Wish 3 and Wish 4 might not necessarily be easier to prove than the more
natural statements that they are alleged to imply, but it is hoped that they might provide
an interesting new perspective on the problem.
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